IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45687-0.html
   My bibliography  Save this article

Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò–Büchi reactions

Author

Listed:
  • Jianjian Huang

    (Huazhong University of Science and Technology (HUST))

  • Tai-Ping Zhou

    (Huazhong University of Science and Technology (HUST))

  • Ningning Sun

    (Huazhong University of Science and Technology (HUST))

  • Huaibin Yu

    (Zhengzhou Research Institute, Harbin Institute of Technology)

  • Xixiang Yu

    (Huazhong University of Science and Technology (HUST))

  • Rong-Zhen Liao

    (Huazhong University of Science and Technology (HUST))

  • Weijun Yao

    (Zhejiang Sci-Tech University)

  • Zhifeng Dai

    (Zhejiang Sci-Tech University
    Longgang Institute of Zhejiang Sci-Tech University)

  • Guojiao Wu

    (Huazhong University of Science and Technology (HUST))

  • Fangrui Zhong

    (Huazhong University of Science and Technology (HUST))

Abstract

Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò–Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.

Suggested Citation

  • Jianjian Huang & Tai-Ping Zhou & Ningning Sun & Huaibin Yu & Xixiang Yu & Rong-Zhen Liao & Weijun Yao & Zhifeng Dai & Guojiao Wu & Fangrui Zhong, 2024. "Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò–Büchi reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45687-0
    DOI: 10.1038/s41467-024-45687-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45687-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45687-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan S. Trimble & Rebecca Crawshaw & Florence J. Hardy & Colin W. Levy & Murray J. B. Brown & Douglas E. Fuerst & Derren J. Heyes & Richard Obexer & Anthony P. Green, 2022. "A designed photoenzyme for enantioselective [2+2] cycloadditions," Nature, Nature, vol. 611(7937), pages 709-714, November.
    2. Ningning Sun & Jianjian Huang & Junyi Qian & Tai-Ping Zhou & Juan Guo & Langyu Tang & Wentao Zhang & Yaming Deng & Weining Zhao & Guojiao Wu & Rong-Zhen Liao & Xi Chen & Fangrui Zhong & Yuzhou Wu, 2022. "Enantioselective [2+2]-cycloadditions with triplet photoenzymes," Nature, Nature, vol. 611(7937), pages 715-720, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng-Fan Wang & Yun-Hu Deng & Yu-Xuan Hong & Jia-Hui Gu & Yong-Yong Cao & Qi Liu & Pierre Braunstein & Jian-Ping Lang, 2023. "In situ observation of a stepwise [2 + 2] photocycloaddition process using fluorescence spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Haoran Huang & Tao Yan & Chang Liu & Yuxiang Lu & Zhigang Wu & Xingchu Wang & Jie Wang, 2024. "Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Amy E. Hutton & Jake Foster & Rebecca Crawshaw & Florence J. Hardy & Linus O. Johannissen & Thomas M. Lister & Emilie F. Gérard & Zachary Birch-Price & Richard Obexer & Sam Hay & Anthony P. Green, 2024. "A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45687-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.