IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45547-x.html
   My bibliography  Save this article

Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum

Author

Listed:
  • Eric Zhewen Li

    (Pennsylvania State University)

  • Tran Dang Nguyen

    (Pennsylvania State University)

  • Thu Nguyen-Anh Tran

    (Pennsylvania State University)

  • Robert J. Zupko

    (Pennsylvania State University)

  • Maciej F. Boni

    (Pennsylvania State University
    University of Oxford)

Abstract

Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.

Suggested Citation

  • Eric Zhewen Li & Tran Dang Nguyen & Thu Nguyen-Anh Tran & Robert J. Zupko & Maciej F. Boni, 2024. "Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45547-x
    DOI: 10.1038/s41467-024-45547-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45547-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45547-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leila S. Ross & Satish K. Dhingra & Sachel Mok & Tomas Yeo & Kathryn J. Wicht & Krittikorn Kümpornsin & Shannon Takala-Harrison & Benoit Witkowski & Rick M. Fairhurst & Frederic Ariey & Didier Menard , 2018. "Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Frédéric Ariey & Benoit Witkowski & Chanaki Amaratunga & Johann Beghain & Anne-Claire Langlois & Nimol Khim & Saorin Kim & Valentine Duru & Christiane Bouchier & Laurence Ma & Pharath Lim & Rithea Lea, 2014. "A molecular marker of artemisinin-resistant Plasmodium falciparum malaria," Nature, Nature, vol. 505(7481), pages 50-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick K. Tumwebaze & Melissa D. Conrad & Martin Okitwi & Stephen Orena & Oswald Byaruhanga & Thomas Katairo & Jennifer Legac & Shreeya Garg & David Giesbrecht & Sawyer R. Smith & Frida G. Ceja & Sam, 2022. "Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Tran Dang Nguyen & Bo Gao & Chanaki Amaratunga & Mehul Dhorda & Thu Nguyen-Anh Tran & Nicholas J. White & Arjen M. Dondorp & Maciej F. Boni & Ricardo Aguas, 2023. "Preventing antimalarial drug resistance with triple artemisinin-based combination therapies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Krittikorn Kümpornsin & Theerarat Kochakarn & Tomas Yeo & John Okombo & Madeline R. Luth & Johanna Hoshizaki & Mukul Rawat & Richard D. Pearson & Kyra A. Schindler & Sachel Mok & Heekuk Park & Anne-Ca, 2023. "Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Mariateresa Cesare & Mulenga Mwenda & Anna E. Jeffreys & Jacob Chirwa & Chris Drakeley & Kammerle Schneider & Brenda Mambwe & Karolina Glanz & Christina Ntalla & Manuela Carrasquilla & Silvia Portugal, 2024. "Flexible and cost-effective genomic surveillance of P. falciparum malaria with targeted nanopore sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Shiroh Iwanaga & Rie Kubota & Tsubasa Nishi & Sumalee Kamchonwongpaisan & Somdet Srichairatanakool & Naoaki Shinzawa & Din Syafruddin & Masao Yuda & Chairat Uthaipibull, 2022. "Genome-wide functional screening of drug-resistance genes in Plasmodium falciparum," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Madhvi Chahar & Anup Anvikar & Neena Valecha, 2019. "Development and Evaluation of a Novel HNB Based Isothermal Amplification Assay for Fast Detection of Pyrimethamine Resistance (S108N) in Plasmodium falciparum," IJERPH, MDPI, vol. 16(9), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45547-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.