IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39914-3.html
   My bibliography  Save this article

Preventing antimalarial drug resistance with triple artemisinin-based combination therapies

Author

Listed:
  • Tran Dang Nguyen

    (Pennsylvania State University)

  • Bo Gao

    (University of Oxford)

  • Chanaki Amaratunga

    (University of Oxford
    Mahidol University)

  • Mehul Dhorda

    (University of Oxford
    Mahidol University)

  • Thu Nguyen-Anh Tran

    (Pennsylvania State University)

  • Nicholas J. White

    (University of Oxford
    Mahidol University)

  • Arjen M. Dondorp

    (University of Oxford
    Mahidol University)

  • Maciej F. Boni

    (Pennsylvania State University
    University of Oxford)

  • Ricardo Aguas

    (University of Oxford
    Mahidol University)

Abstract

Increasing levels of artemisinin and partner drug resistance threaten malaria control and elimination globally. Triple artemisinin-based combination therapies (TACTs) which combine artemisinin derivatives with two partner drugs are efficacious and well tolerated in clinical trials, including in areas of multidrug-resistant malaria. Whether early TACT adoption could delay the emergence and spread of antimalarial drug resistance is a question of vital importance. Using two independent individual-based models of Plasmodium falciparum epidemiology and evolution, we evaluated whether introduction of either artesunate-mefloquine-piperaquine or artemether-lumefantrine-amodiaquine resulted in lower long-term artemisinin-resistance levels and treatment failure rates compared with continued ACT use. We show that introduction of TACTs could significantly delay the emergence and spread of artemisinin resistance and treatment failure, extending the useful therapeutic life of current antimalarial drugs, and improving the chances of malaria elimination. We conclude that immediate introduction of TACTs should be considered by policy makers in areas of emerging artemisinin resistance.

Suggested Citation

  • Tran Dang Nguyen & Bo Gao & Chanaki Amaratunga & Mehul Dhorda & Thu Nguyen-Anh Tran & Nicholas J. White & Arjen M. Dondorp & Maciej F. Boni & Ricardo Aguas, 2023. "Preventing antimalarial drug resistance with triple artemisinin-based combination therapies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39914-3
    DOI: 10.1038/s41467-023-39914-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39914-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39914-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Isabel Veiga & Satish K. Dhingra & Philipp P. Henrich & Judith Straimer & Nina Gnädig & Anne-Catrin Uhlemann & Rowena E. Martin & Adele M. Lehane & David A. Fidock, 2016. "Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    2. Frédéric Ariey & Benoit Witkowski & Chanaki Amaratunga & Johann Beghain & Anne-Claire Langlois & Nimol Khim & Saorin Kim & Valentine Duru & Christiane Bouchier & Laurence Ma & Pharath Lim & Rithea Lea, 2014. "A molecular marker of artemisinin-resistant Plasmodium falciparum malaria," Nature, Nature, vol. 505(7481), pages 50-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Zhewen Li & Tran Dang Nguyen & Thu Nguyen-Anh Tran & Robert J. Zupko & Maciej F. Boni, 2024. "Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Krittikorn Kümpornsin & Theerarat Kochakarn & Tomas Yeo & John Okombo & Madeline R. Luth & Johanna Hoshizaki & Mukul Rawat & Richard D. Pearson & Kyra A. Schindler & Sachel Mok & Heekuk Park & Anne-Ca, 2023. "Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Ruixue Xu & Lirong Lin & Zhiwei Jiao & Rui Liang & Yazhen Guo & Yixin Zhang & Xiaoxu Shang & Yuezhou Wang & Xu Wang & Luming Yao & Shengfa Liu & Xianming Deng & Jing Yuan & Xin-zhuan Su & Jian Li, 2024. "Deaggregation of mutant Plasmodium yoelii de-ubiquitinase UBP1 alters MDR1 localization to confer multidrug resistance," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Mariateresa Cesare & Mulenga Mwenda & Anna E. Jeffreys & Jacob Chirwa & Chris Drakeley & Kammerle Schneider & Brenda Mambwe & Karolina Glanz & Christina Ntalla & Manuela Carrasquilla & Silvia Portugal, 2024. "Flexible and cost-effective genomic surveillance of P. falciparum malaria with targeted nanopore sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Shiroh Iwanaga & Rie Kubota & Tsubasa Nishi & Sumalee Kamchonwongpaisan & Somdet Srichairatanakool & Naoaki Shinzawa & Din Syafruddin & Masao Yuda & Chairat Uthaipibull, 2022. "Genome-wide functional screening of drug-resistance genes in Plasmodium falciparum," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Aurel Holzschuh & Anita Lerch & Inna Gerlovina & Bakar S. Fakih & Abdul-wahid H. Al-mafazy & Erik J. Reaves & Abdullah Ali & Faiza Abbas & Mohamed Haji Ali & Mohamed Ali Ali & Manuel W. Hetzel & Joshu, 2023. "Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Patrick K. Tumwebaze & Melissa D. Conrad & Martin Okitwi & Stephen Orena & Oswald Byaruhanga & Thomas Katairo & Jennifer Legac & Shreeya Garg & David Giesbrecht & Sawyer R. Smith & Frida G. Ceja & Sam, 2022. "Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Madhvi Chahar & Anup Anvikar & Neena Valecha, 2019. "Development and Evaluation of a Novel HNB Based Isothermal Amplification Assay for Fast Detection of Pyrimethamine Resistance (S108N) in Plasmodium falciparum," IJERPH, MDPI, vol. 16(9), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39914-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.