IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45525-3.html
   My bibliography  Save this article

Stalled translation by mitochondrial stress upregulates a CNOT4-ZNF598 ribosomal quality control pathway important for tissue homeostasis

Author

Listed:
  • Ji Geng

    (Stanford University School of Medicine)

  • Shuangxi Li

    (Stanford University School of Medicine
    Shandong University)

  • Yu Li

    (Stanford University School of Medicine
    Shandong University)

  • Zhihao Wu

    (Stanford University School of Medicine)

  • Sunil Bhurtel

    (Stanford University School of Medicine)

  • Suman Rimal

    (Stanford University School of Medicine)

  • Danish Khan

    (Stanford University School of Medicine)

  • Rani Ohja

    (Stanford University School of Medicine)

  • Onn Brandman

    (Stanford University School of Medicine)

  • Bingwei Lu

    (Stanford University School of Medicine)

Abstract

Translational control exerts immediate effect on the composition, abundance, and integrity of the proteome. Ribosome-associated quality control (RQC) handles ribosomes stalled at the elongation and termination steps of translation, with ZNF598 in mammals and Hel2 in yeast serving as key sensors of translation stalling and coordinators of downstream resolution of collided ribosomes, termination of stalled translation, and removal of faulty translation products. The physiological regulation of RQC in general and ZNF598 in particular in multicellular settings is underexplored. Here we show that ZNF598 undergoes regulatory K63-linked ubiquitination in a CNOT4-dependent manner and is upregulated upon mitochondrial stresses in mammalian cells and Drosophila. ZNF598 promotes resolution of stalled ribosomes and protects against mitochondrial stress in a ubiquitination-dependent fashion. In Drosophila models of neurodegenerative diseases and patient cells, ZNF598 overexpression aborts stalled translation of mitochondrial outer membrane-associated mRNAs, removes faulty translation products causal of disease, and improves mitochondrial and tissue health. These results shed lights on the regulation of ZNF598 and its functional role in mitochondrial and tissue homeostasis.

Suggested Citation

  • Ji Geng & Shuangxi Li & Yu Li & Zhihao Wu & Sunil Bhurtel & Suman Rimal & Danish Khan & Rani Ohja & Onn Brandman & Bingwei Lu, 2024. "Stalled translation by mitochondrial stress upregulates a CNOT4-ZNF598 ribosomal quality control pathway important for tissue homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45525-3
    DOI: 10.1038/s41467-024-45525-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45525-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45525-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aitor Garzia & Seyed Mehdi Jafarnejad & Cindy Meyer & Clément Chapat & Tasos Gogakos & Pavel Morozov & Mehdi Amiri & Maayan Shapiro & Henrik Molina & Thomas Tuschl & Nahum Sonenberg, 2017. "The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Yoshitaka Matsuo & Ken Ikeuchi & Yasushi Saeki & Shintaro Iwasaki & Christian Schmidt & Tsuyoshi Udagawa & Fumiya Sato & Hikaru Tsuchiya & Thomas Becker & Keiji Tanaka & Nicholas T. Ingolia & Roland B, 2017. "Ubiquitination of stalled ribosome triggers ribosome-associated quality control," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    3. Rati Verma & Kurt M. Reichermeier & A. Maxwell Burroughs & Robert S. Oania & Justin M. Reitsma & L. Aravind & Raymond J. Deshaies, 2018. "Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes," Nature, Nature, vol. 557(7705), pages 446-451, May.
    4. Olga Zurita Rendón & Eric K. Fredrickson & Conor J. Howard & Jonathan Van Vranken & Sarah Fogarty & Neal D. Tolley & Raghav Kalia & Beatriz A. Osuna & Peter S. Shen & Christopher P. Hill & Adam Frost , 2018. "Vms1p is a release factor for the ribosome-associated quality control complex," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. J. Paul Taylor & Robert H. Brown & Don W. Cleveland, 2016. "Decoding ALS: from genes to mechanism," Nature, Nature, vol. 539(7628), pages 197-206, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ken Ikeuchi & Nives Ivic & Robert Buschauer & Jingdong Cheng & Thomas Fröhlich & Yoshitaka Matsuo & Otto Berninghausen & Toshifumi Inada & Thomas Becker & Roland Beckmann, 2023. "Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Momoko Narita & Timo Denk & Yoshitaka Matsuo & Takato Sugiyama & Chisato Kikuguchi & Sota Ito & Nichika Sato & Toru Suzuki & Satoshi Hashimoto & Iva Machová & Petr Tesina & Roland Beckmann & Toshifumi, 2022. "A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Katharina Best & Ken Ikeuchi & Lukas Kater & Daniel Best & Joanna Musial & Yoshitaka Matsuo & Otto Berninghausen & Thomas Becker & Toshifumi Inada & Roland Beckmann, 2023. "Structural basis for clearing of ribosome collisions by the RQT complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jiangnan Liu & Noemi Nagy & Carlos Ayala-Torres & Francisco Aguilar-Alonso & Francisco Morais-Esteves & Shanshan Xu & Maria G. Masucci, 2023. "Remodeling of the ribosomal quality control and integrated stress response by viral ubiquitin deconjugases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jie Zhong & Chaodong Wang & Dan Zhang & Xiaoli Yao & Quanzhen Zhao & Xusheng Huang & Feng Lin & Chun Xue & Yaqing Wang & Ruojie He & Xu-Ying Li & Qibin Li & Mingbang Wang & Shaoli Zhao & Shabbir Khan , 2024. "PCDHA9 as a candidate gene for amyotrophic lateral sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Topaz Altman & Ariel Ionescu & Amjad Ibraheem & Dominik Priesmann & Tal Gradus-Pery & Luba Farberov & Gayster Alexandra & Natalia Shelestovich & Ruxandra Dafinca & Noam Shomron & Florence Rage & Kevin, 2021. "Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Yoshitaka Matsuo & Takayuki Uchihashi & Toshifumi Inada, 2023. "Decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Laura Matabishi-Bibi & Drice Challal & Mara Barucco & Domenico Libri & Anna Babour, 2022. "Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Jaime Carrasco & Rosa Antón & Alejandro Valbuena & David Pantoja-Uceda & Mayur Mukhi & Rubén Hervás & Douglas V. Laurents & María Gasset & Javier Oroz, 2023. "Metamorphism in TDP-43 prion-like domain determines chaperone recognition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Jessica Mandrioli & Roberto D’Amico & Elisabetta Zucchi & Sara De Biasi & Federico Banchelli & Ilaria Martinelli & Cecilia Simonini & Domenico Lo Tartaro & Roberto Vicini & Nicola Fini & Giulia Gianfe, 2023. "Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Junqiao Jia & Tarek Hilal & Katherine E. Bohnsack & Aleksandar Chernev & Ning Tsao & Juliane Bethmann & Aruna Arumugam & Lane Parmely & Nicole Holton & Bernhard Loll & Nima Mosammaparast & Markus T. B, 2023. "Extended DNA threading through a dual-engine motor module of the activating signal co-integrator 1 complex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Yudong Fu & Fan Jiang & Xiao Zhang & Yingyi Pan & Rui Xu & Xiu Liang & Xiaofen Wu & Xingqiang Li & Kaixuan Lin & Ruona Shi & Xiaofei Zhang & Dominique Ferrandon & Jing Liu & Duanqing Pei & Jie Wang & , 2024. "Perturbation of METTL1-mediated tRNA N7- methylguanosine modification induces senescence and aging," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Federica Raguseo & Yiran Wang & Jessica Li & Marija Petrić Howe & Rubika Balendra & Anouk Huyghebaert & Devkee M. Vadukul & Diana A. Tanase & Thomas E. Maher & Layla Malouf & Roger Rubio-Sánchez & Fra, 2023. "The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Renata Vieira de Sá & Emma Sudria-Lopez & Marta Cañizares Luna & Oliver Harschnitz & Dianne M. A. Heuvel & Sandra Kling & Danielle Vonk & Henk-Jan Westeneng & Henk Karst & Lauri Bloemenkamp & Suzy Var, 2024. "ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    17. Lynne Cassimeris & Jessica C Leung & David J Odde, 2018. "Monte Carlo simulations of microtubule arrays: The critical roles of rescue transitions, the cell boundary, and tubulin concentration in shaping microtubule distributions," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    18. Yosuke Ito & Yuhei Chadani & Tatsuya Niwa & Ayako Yamakawa & Kodai Machida & Hiroaki Imataka & Hideki Taguchi, 2022. "Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45525-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.