IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27221-8.html
   My bibliography  Save this article

Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins

Author

Listed:
  • Topaz Altman

    (Sackler Faculty of Medicine, Tel-Aviv University)

  • Ariel Ionescu

    (Sackler Faculty of Medicine, Tel-Aviv University)

  • Amjad Ibraheem

    (Sackler Faculty of Medicine, Tel-Aviv University)

  • Dominik Priesmann

    (CECAD Research Center and Center for Molecular Medicine (CMMC), University of Cologne)

  • Tal Gradus-Pery

    (Sackler Faculty of Medicine, Tel-Aviv University)

  • Luba Farberov

    (Sackler Faculty of Medicine, Tel-Aviv University)

  • Gayster Alexandra

    (Pathology Institute, Sheba Medical Center, Tel Hashomer)

  • Natalia Shelestovich

    (Pathology Institute, Sheba Medical Center, Tel Hashomer)

  • Ruxandra Dafinca

    (University of Oxford)

  • Noam Shomron

    (Sackler Faculty of Medicine, Tel-Aviv University
    Sagol School of Neuroscience, Tel-Aviv University)

  • Florence Rage

    (Institut de Génétique Moléculaire de Montpellier)

  • Kevin Talbot

    (University of Oxford)

  • Michael E. Ward

    (National Institute of Neurological Disorders and Stroke, National Institutes of Health)

  • Amir Dori

    (Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University)

  • Marcus Krüger

    (CECAD Research Center and Center for Molecular Medicine (CMMC), University of Cologne)

  • Eran Perlson

    (Sackler Faculty of Medicine, Tel-Aviv University
    Sagol School of Neuroscience, Tel-Aviv University)

Abstract

Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.

Suggested Citation

  • Topaz Altman & Ariel Ionescu & Amjad Ibraheem & Dominik Priesmann & Tal Gradus-Pery & Luba Farberov & Gayster Alexandra & Natalia Shelestovich & Ruxandra Dafinca & Noam Shomron & Florence Rage & Kevin, 2021. "Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27221-8
    DOI: 10.1038/s41467-021-27221-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27221-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27221-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pabitra K. Sahoo & Seung Joon Lee & Poonam B. Jaiswal & Stefanie Alber & Amar N. Kar & Sharmina Miller-Randolph & Elizabeth E. Taylor & Terika Smith & Bhagat Singh & Tammy Szu-Yu Ho & Anatoly Urisman , 2018. "Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. J. Paul Taylor & Robert H. Brown & Don W. Cleveland, 2016. "Decoding ALS: from genes to mechanism," Nature, Nature, vol. 539(7628), pages 197-206, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolhossein Zare & Saeede Salehi & Jakob Bader & Cornelius Schneider & Utz Fischer & Alexander Veh & Panagiota Arampatzi & Matthias Mann & Michael Briese & Michael Sendtner, 2024. "hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhong & Chaodong Wang & Dan Zhang & Xiaoli Yao & Quanzhen Zhao & Xusheng Huang & Feng Lin & Chun Xue & Yaqing Wang & Ruojie He & Xu-Ying Li & Qibin Li & Mingbang Wang & Shaoli Zhao & Shabbir Khan , 2024. "PCDHA9 as a candidate gene for amyotrophic lateral sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Laura Matabishi-Bibi & Drice Challal & Mara Barucco & Domenico Libri & Anna Babour, 2022. "Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Jaime Carrasco & Rosa Antón & Alejandro Valbuena & David Pantoja-Uceda & Mayur Mukhi & Rubén Hervás & Douglas V. Laurents & María Gasset & Javier Oroz, 2023. "Metamorphism in TDP-43 prion-like domain determines chaperone recognition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jessica Mandrioli & Roberto D’Amico & Elisabetta Zucchi & Sara De Biasi & Federico Banchelli & Ilaria Martinelli & Cecilia Simonini & Domenico Lo Tartaro & Roberto Vicini & Nicola Fini & Giulia Gianfe, 2023. "Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Federica Raguseo & Yiran Wang & Jessica Li & Marija Petrić Howe & Rubika Balendra & Anouk Huyghebaert & Devkee M. Vadukul & Diana A. Tanase & Thomas E. Maher & Layla Malouf & Roger Rubio-Sánchez & Fra, 2023. "The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Renata Vieira de Sá & Emma Sudria-Lopez & Marta Cañizares Luna & Oliver Harschnitz & Dianne M. A. Heuvel & Sandra Kling & Danielle Vonk & Henk-Jan Westeneng & Henk Karst & Lauri Bloemenkamp & Suzy Var, 2024. "ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    9. Lynne Cassimeris & Jessica C Leung & David J Odde, 2018. "Monte Carlo simulations of microtubule arrays: The critical roles of rescue transitions, the cell boundary, and tubulin concentration in shaping microtubule distributions," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    10. Ji Geng & Shuangxi Li & Yu Li & Zhihao Wu & Sunil Bhurtel & Suman Rimal & Danish Khan & Rani Ohja & Onn Brandman & Bingwei Lu, 2024. "Stalled translation by mitochondrial stress upregulates a CNOT4-ZNF598 ribosomal quality control pathway important for tissue homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Lance T. Denes & Chase P. Kelley & Eric T. Wang, 2021. "Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    13. Yoshifumi Sonobe & Jihad Aburas & Gopinath Krishnan & Andrew C. Fleming & Ghanashyam Ghadge & Priota Islam & Eleanor C. Warren & Yuanzheng Gu & Mark W. Kankel & André E. X. Brown & Evangelos Kiskinis , 2021. "A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27221-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.