IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44849-4.html
   My bibliography  Save this article

Archaean continental crust formed from mafic cumulates

Author

Listed:
  • Matthijs A. Smit

    (University of British Columbia
    Swedish Museum of Natural History)

  • Kira A. Musiyachenko

    (University of British Columbia)

  • Jeroen Goumans

    (University of British Columbia)

Abstract

Large swaths of juvenile crust with tonalite-trondhjemite-granodiorite (TTG) composition were added to the continental crust from about 3.5 billion years ago. Although TTG magmatism marked a pivotal step in early crustal growth and cratonisation, the petrogenetic processes, tectonic setting and sources of TTGs are not well known. Here, we investigate the composition and petrogenesis of Archaean TTGs using high field-strength-element systematics. The Nb concentrations and Ti anomalies of TTGs show the overwhelming effects of amphibole and plagioclase fractionation and permit constraints on the composition of primary TTG melts. These melts are relatively incompatible element-poor and characterised by variably high La/Sm, Sm/Yb and Sr/Y, and positive Eu anomalies. Differences in these parameters are not indicative of melting depth, but instead track differences in the degree of melting and fractional crystallisation. Primary TTGs formed by the melting of rutile- and garnet-bearing plagioclase-cumulate rocks that resided in proto-continental roots. The partial melting of these rocks is part of a causal chain that links TTG magmatism to the formation of sanukitoids and K-rich granites. Together, these processes explain the growth and differentiation of the continental crust during the Archaean without requiring external forcing such as meteorite impact or the start of global plate tectonics.

Suggested Citation

  • Matthijs A. Smit & Kira A. Musiyachenko & Jeroen Goumans, 2024. "Archaean continental crust formed from mafic cumulates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44849-4
    DOI: 10.1038/s41467-024-44849-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44849-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44849-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kurt O. Konhauser & Ernesto Pecoits & Stefan V. Lalonde & Dominic Papineau & Euan G. Nisbet & Mark E. Barley & Nicholas T. Arndt & Kevin Zahnle & Balz S. Kamber, 2009. "Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event," Nature, Nature, vol. 458(7239), pages 750-753, April.
    2. George Zandt & Hersh Gilbert & Thomas J. Owens & Mihai Ducea & Jason Saleeby & Craig H. Jones, 2004. "Active foundering of a continental arc root beneath the southern Sierra Nevada in California," Nature, Nature, vol. 431(7004), pages 41-46, September.
    3. Stephen Foley & Massimo Tiepolo & Riccardo Vannucci, 2002. "Growth of early continental crust controlled by melting of amphibolite in subduction zones," Nature, Nature, vol. 417(6891), pages 837-840, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Huang & Tim E. Johnson & Simon A. Wilde & Ali Polat & Dong Fu & Timothy Kusky, 2022. "Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. John J. Y. He & Paul Kapp, 2023. "Basin record of a Miocene lithosphere drip beneath the Colorado Plateau," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Haijiang Zhang & Qing-Tian Lü & Xiao-Lei Wang & Shoucheng Han & Lijun Liu & Lei Gao & Rui Wang & Zeng-Qian Hou, 2023. "Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44849-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.