IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37855-5.html
   My bibliography  Save this article

Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China

Author

Listed:
  • Haijiang Zhang

    (University of Science and Technology of China, School of Earth and Space Sciences
    University of Science and Technology of China)

  • Qing-Tian Lü

    (Chinese Academy of Geological Sciences)

  • Xiao-Lei Wang

    (Nanjing University)

  • Shoucheng Han

    (University of Science and Technology of China, School of Earth and Space Sciences)

  • Lijun Liu

    (University of Illinois Urbana-Champaign)

  • Lei Gao

    (University of Science and Technology of China, School of Earth and Space Sciences
    Chinese Academy of Geological Sciences)

  • Rui Wang

    (State Key Laboratory of Geological Processes and Mineral Resources, CUGB)

  • Zeng-Qian Hou

    (Chinese Academy of Geological Sciences
    Chinese Academy of Geological Sciences)

Abstract

The current lithospheric root of the South China Block has been partly removed, yet what mechanisms modified the lithospheric structure remain highly controversial. Here we use a new joint seismic inversion algorithm to image tabular high-velocity anomalies at depths of ~90–150 km in the asthenosphere beneath the convergent belt between the Yangtze and Cathaysia blocks that remain weakly connected with the stable Yangtze lithosphere. Based on obtained seismic images and available geochemical data, we interpret these detached fast anomalies as partially destabilized lower lithosphere that initially delaminated at 180–170 Ma and has relaminated to their original position after warming up in the mantle by now. We conclude that delamination is the most plausible mechanism for the lithospheric modification and the formation of a Mesozoic Basin and Range-style magmatic province in South China by triggering adiabatic upwelling of the asthenosphere and consequent lithospheric extension and extensive melting of the overlying crust.

Suggested Citation

  • Haijiang Zhang & Qing-Tian Lü & Xiao-Lei Wang & Shoucheng Han & Lijun Liu & Lei Gao & Rui Wang & Zeng-Qian Hou, 2023. "Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37855-5
    DOI: 10.1038/s41467-023-37855-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37855-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37855-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Zandt & Hersh Gilbert & Thomas J. Owens & Mihai Ducea & Jason Saleeby & Craig H. Jones, 2004. "Active foundering of a continental arc root beneath the southern Sierra Nevada in California," Nature, Nature, vol. 431(7004), pages 41-46, September.
    2. A. Levander & B. Schmandt & M. S. Miller & K. Liu & K. E. Karlstrom & R. S. Crow & C.-T. A. Lee & E. D. Humphreys, 2011. "Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling," Nature, Nature, vol. 472(7344), pages 461-465, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John J. Y. He & Paul Kapp, 2023. "Basin record of a Miocene lithosphere drip beneath the Colorado Plateau," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Matthijs A. Smit & Kira A. Musiyachenko & Jeroen Goumans, 2024. "Archaean continental crust formed from mafic cumulates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Sebastian Buntin & Irina M. Artemieva & Alireza Malehmir & Hans Thybo & Michal Malinowski & Karin Högdahl & Tomasz Janik & Stefan Buske, 2021. "Long-lived Paleoproterozoic eclogitic lower crust," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37855-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.