IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44844-9.html
   My bibliography  Save this article

Acoustic and language-specific sources for phonemic abstraction from speech

Author

Listed:
  • Anna Mai

    (University of California, San Diego, Linguistics)

  • Stephanie Riès

    (San Diego State University, School of Speech, Language, and Hearing Sciences
    San Diego State University, Center for Clinical and Cognitive Sciences)

  • Sharona Ben-Haim

    (University of California, San Diego, Neurological Surgery)

  • Jerry J. Shih

    (University of California, San Diego, Neurosciences)

  • Timothy Q. Gentner

    (University of California, San Diego, Psychology
    University of California, San Diego, Neurobiology
    University of California, San Diego, Kavli Institute for Brain and Mind)

Abstract

Spoken language comprehension requires abstraction of linguistic information from speech, but the interaction between auditory and linguistic processing of speech remains poorly understood. Here, we investigate the nature of this abstraction using neural responses recorded intracranially while participants listened to conversational English speech. Capitalizing on multiple, language-specific patterns where phonological and acoustic information diverge, we demonstrate the causal efficacy of the phoneme as a unit of analysis and dissociate the unique contributions of phonemic and spectrographic information to neural responses. Quantitive higher-order response models also reveal that unique contributions of phonological information are carried in the covariance structure of the stimulus-response relationship. This suggests that linguistic abstraction is shaped by neurobiological mechanisms that involve integration across multiple spectro-temporal features and prior phonological information. These results link speech acoustics to phonology and morphosyntax, substantiating predictions about abstractness in linguistic theory and providing evidence for the acoustic features that support that abstraction.

Suggested Citation

  • Anna Mai & Stephanie Riès & Sharona Ben-Haim & Jerry J. Shih & Timothy Q. Gentner, 2024. "Acoustic and language-specific sources for phonemic abstraction from speech," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44844-9
    DOI: 10.1038/s41467-024-44844-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44844-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44844-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan J. Rowekamp & Tatyana O. Sharpee, 2017. "Cross-orientation suppression in visual area V2," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Kristofer E. Bouchard & Nima Mesgarani & Keith Johnson & Edward F. Chang, 2013. "Functional organization of human sensorimotor cortex for speech articulation," Nature, Nature, vol. 495(7441), pages 327-332, March.
    3. Kristofer E. Bouchard & Nima Mesgarani & Keith Johnson & Edward F. Chang, 2013. "Correction: Corrigendum: Functional organization of human sensorimotor cortex for speech articulation," Nature, Nature, vol. 498(7455), pages 526-526, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisz, Tomasz & Drożdż, Stanisław & Kwapień, Jarosław, 2023. "Universal versus system-specific features of punctuation usage patterns in major Western languages," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Junfeng Lu & Yuanning Li & Zehao Zhao & Yan Liu & Yanming Zhu & Ying Mao & Jinsong Wu & Edward F. Chang, 2023. "Neural control of lexical tone production in human laryngeal motor cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Suseendrakumar Duraivel & Shervin Rahimpour & Chia-Han Chiang & Michael Trumpis & Charles Wang & Katrina Barth & Stephen C. Harward & Shivanand P. Lad & Allan H. Friedman & Derek G. Southwell & Saurab, 2023. "High-resolution neural recordings improve the accuracy of speech decoding," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Sean L. Metzger & Jessie R. Liu & David A. Moses & Maximilian E. Dougherty & Margaret P. Seaton & Kaylo T. Littlejohn & Josh Chartier & Gopala K. Anumanchipalli & Adelyn Tu-Chan & Karunesh Ganguly & E, 2022. "Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Sijia Xu & Jie-Xiang Yu & Hongshuang Guo & Shu Tian & You Long & Jing Yang & Lei Zhang, 2023. "Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Lingyun Zhao & Xiaoqin Wang, 2023. "Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Michael Kai Petersen, 2015. "Latent Semantics of Action Verbs Reflect Phonetic Parameters of Intensity and Emotional Content," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    8. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    9. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44844-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.