IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44659-0.html
   My bibliography  Save this article

A global analysis of how human infrastructure squeezes sandy coasts

Author

Listed:
  • Eva M. Lansu

    (Royal Netherlands Institute for Sea Research (NIOZ)
    University of Groningen)

  • Valérie C. Reijers

    (Utrecht University)

  • Solveig Höfer

    (Royal Netherlands Institute for Sea Research (NIOZ)
    University of Groningen)

  • Arjen Luijendijk

    (Deltares
    Delft University of Technology)

  • Max Rietkerk

    (Utrecht University)

  • Martin J. Wassen

    (Utrecht University)

  • Evert Jan Lammerts

    (Staatsbosbeheer)

  • Tjisse Heide

    (Royal Netherlands Institute for Sea Research (NIOZ)
    University of Groningen)

Abstract

Coastal ecosystems provide vital services, but human disturbance causes massive losses. Remaining ecosystems are squeezed between rising seas and human infrastructure development. While shoreline retreat is intensively studied, coastal congestion through infrastructure remains unquantified. Here we analyse 235,469 transects worldwide to show that infrastructure occurs at a median distance of 392 meter from sandy shorelines. Moreover, we find that 33% of sandy shores harbour less than 100 m of infrastructure-free space, and that 23–30% of this space may be lost by 2100 due to rising sea levels. Further analyses show that population density and gross domestic product explain 35–39% of observed squeeze variation, emphasizing the intensifying pressure imposed as countries develop and populations grow. Encouragingly, we find that nature reserves relieve squeezing by 4–7 times. Yet, at present only 16% of world’s sandy shores have a protected status. We therefore advocate the incorporation of nature protection into spatial planning policies.

Suggested Citation

  • Eva M. Lansu & Valérie C. Reijers & Solveig Höfer & Arjen Luijendijk & Max Rietkerk & Martin J. Wassen & Evert Jan Lammerts & Tjisse Heide, 2024. "A global analysis of how human infrastructure squeezes sandy coasts," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44659-0
    DOI: 10.1038/s41467-023-44659-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44659-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44659-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. E. Perkins-Kirkpatrick & S. C. Lewis, 2020. "Increasing trends in regional heatwaves," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    3. Michalis I. Vousdoukas & Roshanka Ranasinghe & Lorenzo Mentaschi & Theocharis A. Plomaritis & Panagiotis Athanasiou & Arjen Luijendijk & Luc Feyen, 2020. "Sandy coastlines under threat of erosion," Nature Climate Change, Nature, vol. 10(3), pages 260-263, March.
    4. Michalis I. Vousdoukas & Roshanka Ranasinghe & Lorenzo Mentaschi & Theocharis A. Plomaritis & Panagiotis Athanasiou & Arjen Luijendijk & Luc Feyen, 2020. "Reply to: Sandy beaches can survive sea-level rise," Nature Climate Change, Nature, vol. 10(11), pages 996-997, November.
    5. Rodolfo Silva & María Luisa Martínez & Brigitta I. van Tussenbroek & Laura Odette Guzmán-Rodríguez & Edgar Mendoza & Jorge López-Portillo, 2020. "A Framework to Manage Coastal Squeeze," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    3. repec:ags:aaea22:335970 is not listed on IDEAS
    4. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Arellano-Gonzalez, Jesus & Juarez-Torres, Miriam & Zazueta-Borboa, Francisco, 2021. "Temperature shocks and local price changes of agricultural products: panel data evidence from Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314060, Agricultural and Applied Economics Association.
    6. Pedro Aguilar & Edgar Mendoza & Rodolfo Silva, 2021. "Interaction between Tourism Carrying Capacity and Coastal Squeeze in Mazatlan, Mexico," Land, MDPI, vol. 10(9), pages 1-24, August.
    7. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    9. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Haqiqi, Iman & Buzan, Jonathan & Zanetti De Lima, Cicero & Hertel, Thomas, 2020. "Margins of Adaptation to Human Heat Stress: Local, National, and Global Socioeconomic Responses," Conference papers 333237, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Sèna Donalde Dolorès Marguerite Deguenon & Castro Gbêmêmali Hounmenou & Richard Adade & Oscar Teka & Ismaila Imorou Toko & Denis Worlanyo Aheto & Brice Sinsin, 2023. "Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    13. Gege Nie & Jun Yang & Yuqing Zhang & Xiangming Xiao & Jianhong (Cecilia) Xia & Xiaoyu Cai & Chunli Li, 2024. "Duration of exposure to compound daytime-nighttime high temperatures and changes in population exposure in China under global warming," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    14. Jing Zhang & Yan Zhang & Huw Lloyd & Zhengwang Zhang & Donglai Li, 2021. "Rapid Reclamation and Degradation of Suaeda salsa Saltmarsh along Coastal China’s Northern Yellow Sea," Land, MDPI, vol. 10(8), pages 1-13, August.
    15. Xin-Feng Wei & Wei Yang & Mikael S. Hedenqvist, 2024. "Plastic pollution amplified by a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    16. Jennifer R. Shadrick & Dylan H. Rood & Martin D. Hurst & Matthew D. Piggott & Bethany G. Hebditch & Alexander J. Seal & Klaus M. Wilcken, 2022. "Sea-level rise will likely accelerate rock coast cliff retreat rates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Tracy Elsey-Quirk & Austin Lynn & Michael Derek Jacobs & Rodrigo Diaz & James T. Cronin & Lixia Wang & Haosheng Huang & Dubravko Justic, 2024. "Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Gautier, Antoine & Wetter, Michael & Sulzer, Matthias, 2022. "Resilient cooling through geothermal district energy system," Applied Energy, Elsevier, vol. 325(C).
    19. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    20. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    21. Juan Carlos Alcérreca-Huerta & Cesia J. Cruz-Ramírez & Laura R. de Almeida & Valeria Chávez & Rodolfo Silva, 2022. "Interconnections between Coastal Sediments, Hydrodynamics, and Ecosystem Profiles on the Mexican Caribbean Coast," Land, MDPI, vol. 11(4), pages 1-22, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44659-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.