IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44605-0.html
   My bibliography  Save this article

Levels of complement factor H-related 4 protein do not influence susceptibility to age-related macular degeneration or its course of progression

Author

Listed:
  • M. A. Zouache

    (University of Utah)

  • B. T. Richards

    (University of Utah)

  • C. M. Pappas

    (University of Utah)

  • R. A. Anstadt

    (University of Utah)

  • J. Liu

    (University of Utah)

  • T. Corsetti

    (University of Utah)

  • S. Matthews

    (University of Utah)

  • N. A. Seager

    (University of Utah)

  • S. Schmitz-Valckenberg

    (University of Utah)

  • M. Fleckenstein

    (University of Utah)

  • W. C. Hubbard

    (University of Utah)

  • J. Thomas

    (University of Utah)

  • J. L. Hageman

    (University of Utah)

  • B. L. Williams

    (University of Utah)

  • G. S. Hageman

    (University of Utah)

Abstract

Dysregulation of the alternative pathway (AP) of the complement system is a significant contributor to age-related macular degeneration (AMD), a primary cause of irreversible vision loss worldwide. Here, we assess the contribution of the liver-produced complement factor H-related 4 protein (FHR-4) to AMD initiation and course of progression. We show that FHR-4 variation in plasma and at the primary location of AMD-associated pathology, the retinal pigment epithelium/Bruch’s membrane/choroid interface, is entirely explained by three independent quantitative trait loci (QTL). Using two distinct cohorts composed of a combined 14,965 controls and 20,741 cases, we ascertain that independent QTLs for FHR-4 are distinct from variants causally associated with AMD, and that FHR-4 variation is not independently associated with disease. Additionally, FHR-4 does not appear to influence AMD progression course among patients with disease driven predominantly by AP dysregulation. Modulation of FHR-4 is therefore unlikely to be an effective therapeutic strategy for AMD.

Suggested Citation

  • M. A. Zouache & B. T. Richards & C. M. Pappas & R. A. Anstadt & J. Liu & T. Corsetti & S. Matthews & N. A. Seager & S. Schmitz-Valckenberg & M. Fleckenstein & W. C. Hubbard & J. Thomas & J. L. Hageman, 2024. "Levels of complement factor H-related 4 protein do not influence susceptibility to age-related macular degeneration or its course of progression," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44605-0
    DOI: 10.1038/s41467-023-44605-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44605-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44605-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Delaneau & Halit Ongen & Andrew A. Brown & Alexandre Fort & Nikolaos I. Panousis & Emmanouil T. Dermitzakis, 2017. "A complete tool set for molecular QTL discovery and analysis," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    2. Alexander Gudjonsson & Valborg Gudmundsdottir & Gisli T. Axelsson & Elias F. Gudmundsson & Brynjolfur G. Jonsson & Lenore J. Launer & John R. Lamb & Lori L. Jennings & Thor Aspelund & Valur Emilsson &, 2022. "A genome-wide association study of serum proteins reveals shared loci with common diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Valur Emilsson & Elias F. Gudmundsson & Thorarinn Jonmundsson & Brynjolfur G. Jonsson & Michael Twarog & Valborg Gudmundsdottir & Zhiguang Li & Nancy Finkel & Stephen Poor & Xin Liu & Robert Esterberg, 2022. "A proteogenomic signature of age-related macular degeneration in blood," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Valentina Cipriani & Laura Lorés-Motta & Fan He & Dina Fathalla & Viranga Tilakaratna & Selina McHarg & Nadhim Bayatti & İlhan E. Acar & Carel B. Hoyng & Sascha Fauser & Anthony T. Moore & John R. W. , 2020. "Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    5. Oliver Stegle & Leopold Parts & Richard Durbin & John Winn, 2010. "A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valur Emilsson & Elias F. Gudmundsson & Thorarinn Jonmundsson & Brynjolfur G. Jonsson & Michael Twarog & Valborg Gudmundsdottir & Zhiguang Li & Nancy Finkel & Stephen Poor & Xin Liu & Robert Esterberg, 2022. "A proteogenomic signature of age-related macular degeneration in blood," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Satria P. Sajuthi & Jamie L. Everman & Nathan D. Jackson & Benjamin Saef & Cydney L. Rios & Camille M. Moore & Angel C. Y. Mak & Celeste Eng & Ana Fairbanks-Mahnke & Sandra Salazar & Jennifer Elhawary, 2022. "Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Rongling Wang & Mario Gomez Salazar & Iris Pruñonosa Cervera & Amanda Coutts & Karen French & Marlene Magalhaes Pinto & Sabrina Gohlke & Ruben García-Martín & Matthias Blüher & Christopher J. Schofiel, 2024. "Adipocyte deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Sébastien Thériault & Zhonglin Li & Erik Abner & Jian’an Luan & Hasanga D. Manikpurage & Ursula Houessou & Pardis Zamani & Mewen Briend & Dominique K. Boudreau & Nathalie Gaudreault & Lily Frenette & , 2024. "Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Elizabeth C. Goode & Laura Fachal & Nikolaos Panousis & Loukas Moutsianas & Rebecca E. McIntyre & Benjamin Yu Hang Bai & Norihito Kawasaki & Alexandra Wittmann & Tim Raine & Simon M. Rushbrook & Carl , 2024. "Fine-mapping and molecular characterisation of primary sclerosing cholangitis genetic risk loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Seong Kyu Han & Michelle T. McNulty & Christopher J. Benway & Pei Wen & Anya Greenberg & Ana C. Onuchic-Whitford & Dongkeun Jang & Jason Flannick & Noël P. Burtt & Parker C. Wilson & Benjamin D. Humph, 2023. "Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhao Wang & Qian Liang & Xinyi Qian & Bolang Hu & Zhanye Zheng & Jianhua Wang & Yuelin Hu & Zhengkai Bao & Ke Zhao & Yao Zhou & Xiangling Feng & Xianfu Yi & Jin Li & Jiandang Shi & Zhe Liu & Jihui Hao, 2023. "An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Celine A. Manigbas & Bharati Jadhav & Paras Garg & Mariya Shadrina & William Lee & Gabrielle Altman & Alejandro Martin-Trujillo & Andrew J. Sharp, 2024. "A phenome-wide association study of tandem repeat variation in 168,554 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Nikolaos M. R. Lykoskoufis & Evarist Planet & Halit Ongen & Didier Trono & Emmanouil T. Dermitzakis, 2024. "Transposable elements mediate genetic effects altering the expression of nearby genes in colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Anneke Brümmer & Sven Bergmann, 2024. "Disentangling genetic effects on transcriptional and post-transcriptional gene regulation through integrating exon and intron expression QTLs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Barbara E Stranger & Stephen B Montgomery & Antigone S Dimas & Leopold Parts & Oliver Stegle & Catherine E Ingle & Magda Sekowska & George Davey Smith & David Evans & Maria Gutierrez-Arcelus & Alkes P, 2012. "Patterns of Cis Regulatory Variation in Diverse Human Populations," PLOS Genetics, Public Library of Science, vol. 8(4), pages 1-13, April.
    14. Yu Yan & Hongbo Liu & Amin Abedini & Xin Sheng & Matthew Palmer & Hongzhe Li & Katalin Susztak, 2024. "Unraveling the epigenetic code: human kidney DNA methylation and chromatin dynamics in renal disease development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Antje Häder & Sascha Schäuble & Jan Gehlen & Nadja Thielemann & Benedikt C. Buerfent & Vitalia Schüller & Timo Hess & Thomas Wolf & Julia Schröder & Michael Weber & Kerstin Hünniger & Jürgen Löffler &, 2023. "Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Nicoló Fusi & Oliver Stegle & Neil D Lawrence, 2012. "Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-9, January.
    17. Andrew A. Brown & Juan J. Fernandez-Tajes & Mun-gwan Hong & Caroline A. Brorsson & Robert W. Koivula & David Davtian & Théo Dupuis & Ambra Sartori & Theodora-Dafni Michalettou & Ian M. Forgie & Jonath, 2023. "Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    19. Amil M. Shah & Peder L. Myhre & Victoria Arthur & Pranav Dorbala & Humaira Rasheed & Leo F. Buckley & Brian Claggett & Guning Liu & Jianzhong Ma & Ngoc Quynh Nguyen & Kunihiro Matsushita & Chiadi Ndum, 2024. "Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Xena Marie Mapel & Naveen Kumar Kadri & Alexander S. Leonard & Qiongyu He & Audald Lloret-Villas & Meenu Bhati & Maya Hiltpold & Hubert Pausch, 2024. "Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44605-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.