IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44546-8.html
   My bibliography  Save this article

The UBP5 histone H2A deubiquitinase counteracts PRCs-mediated repression to regulate Arabidopsis development

Author

Listed:
  • James Godwin

    (University of Galway
    Donald Danforth Plant Science Center)

  • Mohan Govindasamy

    (University of Galway)

  • Kiruba Nedounsejian

    (University of Galway)

  • Eduardo March

    (University of Galway)

  • Ronan Halton

    (University of Galway)

  • Clara Bourbousse

    (École Normale Supérieure, CNRS, INSERM, Université PSL)

  • Léa Wolff

    (École Normale Supérieure, CNRS, INSERM, Université PSL)

  • Antoine Fort

    (Technological University of The Shannon: Midlands, Athlone, Co.)

  • Michal Krzyszton

    (Institute of Biochemistry and Biophysics, PAS)

  • Jesús López Corrales

    (University of Galway)

  • Szymon Swiezewski

    (Institute of Biochemistry and Biophysics, PAS)

  • Fredy Barneche

    (École Normale Supérieure, CNRS, INSERM, Université PSL)

  • Daniel Schubert

    (Freie Universität Berlin)

  • Sara Farrona

    (University of Galway)

Abstract

Polycomb Repressive Complexes (PRCs) control gene expression through the incorporation of H2Aub and H3K27me3. In recent years, there is increasing evidence of the complexity of PRCs’ interaction networks and the interplay of these interactors with PRCs in epigenome reshaping, which is fundamental to understand gene regulatory mechanisms. Here, we identified UBIQUITIN SPECIFIC PROTEASE 5 (UBP5) as a chromatin player able to counteract the deposition of the two PRCs’ epigenetic hallmarks in Arabidopsis thaliana. We demonstrated that UBP5 is a plant developmental regulator based on functional analyses of ubp5-CRISPR Cas9 mutant plants. UBP5 promotes H2A monoubiquitination erasure, leading to transcriptional de-repression. Furthermore, preferential association of UBP5 at PRC2 recruiting motifs and local H3K27me3 gaining in ubp5 mutant plants suggest the existence of functional interplays between UBP5 and PRC2 in regulating epigenome dynamics. In summary, acting as an antagonist of the pivotal epigenetic repressive marks H2Aub and H3K27me3, UBP5 provides novel insights to disentangle the complex regulation of PRCs’ activities.

Suggested Citation

  • James Godwin & Mohan Govindasamy & Kiruba Nedounsejian & Eduardo March & Ronan Halton & Clara Bourbousse & Léa Wolff & Antoine Fort & Michal Krzyszton & Jesús López Corrales & Szymon Swiezewski & Fred, 2024. "The UBP5 histone H2A deubiquitinase counteracts PRCs-mediated repression to regulate Arabidopsis development," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44546-8
    DOI: 10.1038/s41467-023-44546-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44546-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44546-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaochang Yin & Francisco J. Romero-Campero & Pedro de Los Reyes & Peng Yan & Jing Yang & Guangmei Tian & XiaoZeng Yang & Xiaorong Mo & Shuangshuang Zhao & Myriam Calonje & Yue Zhou, 2021. "H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Johanna C. Scheuermann & Andrés Gaytán de Ayala Alonso & Katarzyna Oktaba & Nga Ly-Hartig & Robert K. McGinty & Sven Fraterman & Matthias Wilm & Tom W. Muir & Jürg Müller, 2010. "Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB," Nature, Nature, vol. 465(7295), pages 243-247, May.
    3. Vaniyambadi V. Sridhar & Avnish Kapoor & Kangling Zhang & Jianjun Zhu & Tao Zhou & Paul M. Hasegawa & Ray A. Bressan & Jian-Kang Zhu, 2007. "Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination," Nature, Nature, vol. 447(7145), pages 735-738, June.
    4. Danny D. Sahtoe & Willem J. van Dijk & Reggy Ekkebus & Huib Ovaa & Titia K. Sixma, 2016. "BAP1/ASXL1 recruitment and activation for H2A deubiquitination," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    5. Haithem Barbour & Salima Daou & Michael Hendzel & El Bachir Affar, 2020. "Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Guojia Xie & Ji-Eun Lee & Mohamad Zandian & Deepthi Sudarshan & Benjamin Estavoyer & Caroline Benz & Tiina Viita & Golareh Asgaritarghi & Catherine Lachance & Clémence Messmer & Leandro Sim, 2024. "ASXLs binding to the PHD2/3 fingers of MLL4 provides a mechanism for the recruitment of BAP1 to active enhancers," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Pawel Mikulski & Philip Wolff & Tiancong Lu & Mathias Nielsen & Elsa Franco Echevarria & Danling Zhu & Julia I. Questa & Gerhard Saalbach & Carlo Martins & Caroline Dean, 2022. "VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yu Zhang & Min Ma & Meng Liu & Aiqing Sun & Xiaoyun Zheng & Kunpeng Liu & Chunmei Yin & Chuanshun Li & Cizhong Jiang & Xiaoyu Tu & Yuda Fang, 2023. "Histone H2A monoubiquitination marks are targeted to specific sites by cohesin subunits in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Linhua Sun & Jingru Zhou & Xiao Xu & Yi Liu & Ni Ma & Yutong Liu & Wenchao Nie & Ling Zou & Xing Wang Deng & Hang He, 2024. "Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Nidhi Rohatgi & Wei Zou & Yongjia Li & Kevin Cho & Patrick L. Collins & Eric Tycksen & Gaurav Pandey & Carl J. DeSelm & Gary J. Patti & Anwesha Dey & Steven L. Teitelbaum, 2023. "BAP1 promotes osteoclast function by metabolic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Julian Cheron & Leonardo Beccari & Perrine Hagué & Romain Icick & Chloé Despontin & Teresa Carusone & Matthieu Defrance & Sagar Bhogaraju & Elena Martin-Garcia & Roberto Capellan & Rafael Maldonado & , 2023. "USP7/Maged1-mediated H2A monoubiquitination in the paraventricular thalamus: an epigenetic mechanism involved in cocaine use disorder," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Yige Wu & Nadezhda V. Terekhanova & Wagma Caravan & Nataly Naser Al Deen & Preet Lal & Siqi Chen & Chia-Kuei Mo & Song Cao & Yize Li & Alla Karpova & Ruiyang Liu & Yanyan Zhao & Andrew Shinkle & Ilya , 2023. "Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    8. C. W. Ryan & S. L. Regan & E. F. Mills & B. T. McGrath & E. Gong & Y. T. Lai & J. B. Sheingold & K. Patel & T. Horowitz & A. Moccia & Y. C. Tsan & A. Srivastava & S. L. Bielas, 2024. "RING1 missense variants reveal sensitivity of DNA damage repair to H2A monoubiquitination dosage during neurogenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Moritz Binder & Ryan M. Carr & Terra L. Lasho & Christy M. Finke & Abhishek A. Mangaonkar & Christopher L. Pin & Kurt R. Berger & Amelia Mazzone & Sandeep Potluri & Tamas Ordog & Keith D. Robertson & , 2022. "Oncogenic gene expression and epigenetic remodeling of cis-regulatory elements in ASXL1-mutant chronic myelomonocytic leukemia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44546-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.