IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44465-8.html
   My bibliography  Save this article

Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer’s disease and aging

Author

Listed:
  • Bidur Paudel

    (Northwestern University)

  • Si-Yeon Jeong

    (Northwestern University
    Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau)

  • Carolina Pena Martinez

    (USF Health Byrd Alzheimer’s Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine)

  • Alexis Rickman

    (USF Health Byrd Alzheimer’s Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine)

  • Ashley Haluck-Kangas

    (Northwestern University)

  • Elizabeth T. Bartom

    (Northwestern University
    Northwestern University)

  • Kristina Fredriksen

    (Northwestern University)

  • Amira Affaneh

    (Northwestern University)

  • John A. Kessler

    (Northwestern University)

  • Joseph R. Mazzulli

    (Northwestern University)

  • Andrea E. Murmann

    (Northwestern University)

  • Emily Rogalski

    (Northwestern University
    Northwestern University
    The University of Chicago)

  • Changiz Geula

    (Northwestern University
    Northwestern University)

  • Adriana Ferreira

    (Northwestern University)

  • Bradlee L. Heckmann

    (USF Health Byrd Alzheimer’s Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine)

  • Douglas R. Green

    (St. Jude Children’s Research Hospital)

  • Katherine R. Sadleir

    (Northwestern University)

  • Robert Vassar

    (Northwestern University
    Northwestern University)

  • Marcus E. Peter

    (Northwestern University
    Northwestern University)

Abstract

Alzheimer’s disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of “SuperAgers”, humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.

Suggested Citation

  • Bidur Paudel & Si-Yeon Jeong & Carolina Pena Martinez & Alexis Rickman & Ashley Haluck-Kangas & Elizabeth T. Bartom & Kristina Fredriksen & Amira Affaneh & John A. Kessler & Joseph R. Mazzulli & Andre, 2024. "Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer’s disease and aging," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44465-8
    DOI: 10.1038/s41467-023-44465-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44465-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44465-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Quan Q. Gao & William E. Putzbach & Andrea E. Murmann & Siquan Chen & Aishe A. Sarshad & Johannes M. Peter & Elizabeth T. Bartom & Markus Hafner & Marcus E. Peter, 2018. "6mer seed toxicity in tumor suppressive microRNAs," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. Angela M. Crist & Kelly M. Hinkle & Xue Wang & Christina M. Moloney & Billie J. Matchett & Sydney A. Labuzan & Isabelle Frankenhauser & Nkem O. Azu & Amanda M. Liesinger & Elizabeth R. Lesser & Daniel, 2021. "Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer’s disease," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Yanli Wang & Gang Sheng & Stefan Juranek & Thomas Tuschl & Dinshaw J. Patel, 2008. "Structure of the guide-strand-containing argonaute silencing complex," Nature, Nature, vol. 456(7219), pages 209-213, November.
    4. Michael B. Miller & August Yue Huang & Junho Kim & Zinan Zhou & Samantha L. Kirkham & Eduardo A. Maury & Jennifer S. Ziegenfuss & Hannah C. Reed & Jennifer E. Neil & Lariza Rento & Steven C. Ryu & Cha, 2022. "Somatic genomic changes in single Alzheimer’s disease neurons," Nature, Nature, vol. 604(7907), pages 714-722, April.
    5. Emily Bernstein & Amy A. Caudy & Scott M. Hammond & Gregory J. Hannon, 2001. "Role for a bidentate ribonuclease in the initiation step of RNA interference," Nature, Nature, vol. 409(6818), pages 363-366, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megha Jhanji & Chintada Nageswara Rao & Jacob C. Massey & Marion C. Hope & Xueyan Zhou & C. Dirk Keene & Tao Ma & Michael D. Wyatt & Jason A. Stewart & Mathew Sajish, 2022. "Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Lidiya Lisitskaya & Yeonoh Shin & Aleksei Agapov & Anna Olina & Ekaterina Kropocheva & Sergei Ryazansky & Alexei A. Aravin & Daria Esyunina & Katsuhiko S. Murakami & Andrey Kulbachinskiy, 2022. "Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Katerina Gkirtzou & Ioannis Tsamardinos & Panagiotis Tsakalides & Panayiota Poirazi, 2010. "MatureBayes: A Probabilistic Algorithm for Identifying the Mature miRNA within Novel Precursors," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    4. Carolien Bastiaanssen & Pilar Bobadilla Ugarte & Kijun Kim & Giada Finocchio & Yanlei Feng & Todd A. Anzelon & Stephan Köstlbacher & Daniel Tamarit & Thijs J. G. Ettema & Martin Jinek & Ian J. MacRae , 2024. "RNA-guided RNA silencing by an Asgard archaeal Argonaute," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Trung Duc Nguyen & Tam Anh Trinh & Sheng Bao & Tuan Anh Nguyen, 2022. "Secondary structure RNA elements control the cleavage activity of DICER," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Felix K. F. Kommoss & Anne-Sophie Chong & Anne-Laure Chong & Elke Pfaff & David T. W. Jones & Laura S. Hiemcke-Jiwa & Lennart A. Kester & Uta Flucke & Manfred Gessler & Daniel Schrimpf & Felix Sahm & , 2023. "Genomic characterization of DICER1-associated neoplasms uncovers molecular classes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Logan Brase & Shih-Feng You & Ricardo D’Oliveira Albanus & Jorge L. Del-Aguila & Yaoyi Dai & Brenna C. Novotny & Carolina Soriano-Tarraga & Taitea Dykstra & Maria Victoria Fernandez & John P. Budde & , 2023. "Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Yonghua Wang & Yan Li & Zhi Ma & Wei Yang & Chunzhi Ai, 2010. "Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    10. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Bin Liu & Longyun Fang & Fule Liu & Xiaolong Wang & Junjie Chen & Kuo-Chen Chou, 2015. "Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    12. Chen Sun & Kunal Kathuria & Sarah B. Emery & ByungJun Kim & Ian E. Burbulis & Joo Heon Shin & Daniel R. Weinberger & John V. Moran & Jeffrey M. Kidd & Ryan E. Mills & Michael J. McConnell, 2024. "Mapping recurrent mosaic copy number variation in human neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Marta Garcia-Montojo & Saeed Fathi & Cyrus Rastegar & Elena Rita Simula & Tara Doucet-O’Hare & Y. H. Hank Cheng & Rachel P. M. Abrams & Nicholas Pasternack & Nasir Malik & Muzna Bachani & Brianna Disa, 2024. "TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    14. Sarah Willkomm & Leonhard Jakob & Kevin Kramm & Veronika Graus & Julia Neumeier & Gunter Meister & Dina Grohmann, 2022. "Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Justine M Pompey & Bardees Foda & Upinder Singh, 2015. "A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    16. Junho Kim & August Yue Huang & Shelby L. Johnson & Jenny Lai & Laura Isacco & Ailsa M. Jeffries & Michael B. Miller & Michael A. Lodato & Christopher A. Walsh & Eunjung Alice Lee, 2022. "Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Hanlun Jiang & Fu Kit Sheong & Lizhe Zhu & Xin Gao & Julie Bernauer & Xuhui Huang, 2015. "Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44465-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.