IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44447-w.html
   My bibliography  Save this article

High throughput intracellular delivery by viscoelastic mechanoporation

Author

Listed:
  • Derin Sevenler

    (Harvard Medical School)

  • Mehmet Toner

    (Harvard Medical School
    Shriners Children’s)

Abstract

Brief pulses of electric field (electroporation) and/or tensile stress (mechanoporation) have been used to reversibly permeabilize the plasma membrane of mammalian cells and deliver materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a high throughput approach to mechanoporation in which the plasma membrane is stretched and reversibly permeabilized by viscoelastic fluid forces within a microfluidic chip without surface contact. Biomolecules are delivered directly to the cytosol within seconds at a throughput exceeding 250 million cells per minute. Viscoelastic mechanoporation is compatible with a variety of biomolecules including proteins, RNA, and CRISPR-Cas9 ribonucleoprotein complexes, as well as a range of cell types including HEK293T cells and primary T cells. Altogether, viscoelastic mechanoporation appears feasible for contact-free permeabilization and delivery of biomolecules to mammalian cells ex vivo.

Suggested Citation

  • Derin Sevenler & Mehmet Toner, 2024. "High throughput intracellular delivery by viscoelastic mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44447-w
    DOI: 10.1038/s41467-023-44447-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44447-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44447-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph Jose Thottacherry & Anita Joanna Kosmalska & Amit Kumar & Amit Singh Vishen & Alberto Elosegui-Artola & Susav Pradhan & Sumit Sharma & Parvinder P. Singh & Marta C. Guadamillas & Natasha Chaudh, 2018. "Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Susan P. Foy & Kyle Jacoby & Daniela A. Bota & Theresa Hunter & Zheng Pan & Eric Stawiski & Yan Ma & William Lu & Songming Peng & Clifford L. Wang & Benjamin Yuen & Olivier Dalmas & Katharine Heeringa, 2023. "Non-viral precision T cell receptor replacement for personalized cell therapy," Nature, Nature, vol. 615(7953), pages 687-696, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Jeong Kim & Dayoung Yun & Jungjoon K. Lee & Cheulhee Jung & Aram J. Chung, 2024. "Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingming Zhao & Xiaohui Cheng & Pingwen Shao & Yao Dong & Yongjie Wu & Lin Xiao & Zhiying Cui & Xuedi Sun & Chuancheng Gao & Jiangning Chen & Zhen Huang & Junfeng Zhang, 2024. "Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Nandini Pal Basak & Kowshik Jaganathan & Biswajit Das & Oliyarasi Muthusamy & Rajashekar M & Ritu Malhotra & Amit Samal & Moumita Nath & Ganesh MS & Amritha Prabha Shankar & Prakash BV & Vijay Pillai , 2024. "Tumor histoculture captures the dynamic interactions between tumor and immune components in response to anti-PD1 in head and neck cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44447-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.