IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44142-w.html
   My bibliography  Save this article

Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina

Author

Listed:
  • Pin Lyu

    (Johns Hopkins University School of Medicine)

  • Maria Iribarne

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

  • Dmitri Serjanov

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

  • Yijie Zhai

    (Johns Hopkins University School of Medicine)

  • Thanh Hoang

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

  • Leah J. Campbell

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

  • Patrick Boyd

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

  • Isabella Palazzo

    (Johns Hopkins University School of Medicine)

  • Mikiko Nagashima

    (University of Michigan School of Medicine)

  • Nicholas J. Silva

    (University of Michigan School of Medicine)

  • Peter F. Hitchcock

    (University of Michigan School of Medicine)

  • Jiang Qian

    (Johns Hopkins University School of Medicine)

  • David R. Hyde

    (University of Notre Dame
    University of Notre Dame
    University of Notre Dame)

  • Seth Blackshaw

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

Abstract

Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes through Müller glia (MG) reprogramming and asymmetric cell division that produces a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, do MG reprogram to a developmental retinal progenitor cell (RPC) state? Second, to what extent does regeneration recapitulate retinal development? And finally, does loss of different retinal cell subtypes induce unique MG regeneration responses? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. Here we show that injury induces MG to reprogram to a state similar to late-stage RPCs. However, there are major transcriptional differences between MGPCs and RPCs, as well as major transcriptional differences between activated MG and MGPCs when different retinal cell subtypes are damaged. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes.

Suggested Citation

  • Pin Lyu & Maria Iribarne & Dmitri Serjanov & Yijie Zhai & Thanh Hoang & Leah J. Campbell & Patrick Boyd & Isabella Palazzo & Mikiko Nagashima & Nicholas J. Silva & Peter F. Hitchcock & Jiang Qian & Da, 2023. "Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44142-w
    DOI: 10.1038/s41467-023-44142-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44142-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44142-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikolas L. Jorstad & Matthew S. Wilken & William N. Grimes & Stefanie G. Wohl & Leah S. VandenBosch & Takeshi Yoshimatsu & Rachel O. Wong & Fred Rieke & Thomas A. Reh, 2017. "Stimulation of functional neuronal regeneration from Müller glia in adult mice," Nature, Nature, vol. 548(7665), pages 103-107, August.
    2. Mette Bentsen & Philipp Goymann & Hendrik Schultheis & Kathrin Klee & Anastasiia Petrova & René Wiegandt & Annika Fust & Jens Preussner & Carsten Kuenne & Thomas Braun & Johnny Kim & Mario Looso, 2020. "ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felicia Lazure & Rick Farouni & Korin Sahinyan & Darren M. Blackburn & Aldo Hernández-Corchado & Gabrielle Perron & Tianyuan Lu & Adrien Osakwe & Jiannis Ragoussis & Colin Crist & Theodore J. Perkins , 2023. "Transcriptional reprogramming of skeletal muscle stem cells by the niche environment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Tao Zhu & Chunjiao Xia & Ranran Yu & Xinkai Zhou & Xingbing Xu & Lin Wang & Zhanxiang Zong & Junjiao Yang & Yinmeng Liu & Luchang Ming & Yuxin You & Dijun Chen & Weibo Xie, 2024. "Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Kathleen Shah & Muralidhara Rao Maradana & M. Joaquina Delàs & Amina Metidji & Frederike Graelmann & Miriam Llorian & Probir Chakravarty & Ying Li & Mauro Tolaini & Michael Shapiro & Gavin Kelly & Chr, 2022. "Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Zhenhui Zhong & Yafei Wang & Ming Wang & Fan Yang & Quentin Angelo Thomas & Yan Xue & Yaxin Zhang & Wanlu Liu & Yasaman Jami-Alahmadi & Linhao Xu & Suhua Feng & Sebastian Marquardt & James A. Wohlschl, 2022. "Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Joyce J. Thompson & Daniel J. Lee & Apratim Mitra & Sarah Frail & Ryan K. Dale & Pedro P. Rocha, 2022. "Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Moritz Binder & Raphael E. Szalat & Srikanth Talluri & Mariateresa Fulciniti & Hervé Avet-Loiseau & Giovanni Parmigiani & Mehmet K. Samur & Nikhil C. Munshi, 2024. "Bone marrow stromal cells induce chromatin remodeling in multiple myeloma cells leading to transcriptional changes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Timothy D. Arthur & Jennifer P. Nguyen & Agnieszka D’Antonio-Chronowska & Hiroko Matsui & Nayara S. Silva & Isaac N. Joshua & André D. Luchessi & William W. Young Greenwald & Matteo D’Antonio & Martin, 2024. "Complex regulatory networks influence pluripotent cell state transitions in human iPSCs," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Nicholas Sim & Jean-Michel Carter & Kamalakshi Deka & Benita Kiat Tee Tan & Yirong Sim & Suet-Mien Tan & Yinghui Li, 2024. "TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Chao Yang & Mahesh Bachu & Yong Du & Caroline Brauner & Ruoxi Yuan & Marie Dominique Ah Kioon & Giancarlo Chesi & Franck J. Barrat & Lionel B. Ivashkiv, 2022. "CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Aditya Kshirsagar & Svetlana Maslov Doroshev & Anna Gorelik & Tsviya Olender & Tamar Sapir & Daisuke Tsuboi & Irit Rosenhek-Goldian & Sergey Malitsky & Maxim Itkin & Amir Argoetti & Yael Mandel-Gutfre, 2023. "LIS1 RNA-binding orchestrates the mechanosensitive properties of embryonic stem cells in AGO2-dependent and independent ways," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Arthur S. Lee & Lauren J. Ayers & Michael Kosicki & Wai-Man Chan & Lydia N. Fozo & Brandon M. Pratt & Thomas E. Collins & Boxun Zhao & Matthew F. Rose & Alba Sanchis-Juan & Jack M. Fu & Isaac Wong & X, 2024. "A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    13. Denis Torre & Nancy J. Francoeur & Yael Kalma & Ilana Gross Carmel & Betsaida S. Melo & Gintaras Deikus & Kimaada Allette & Ron Flohr & Maya Fridrikh & Konstantinos Vlachos & Kent Madrid & Hardik Shah, 2023. "Isoform-resolved transcriptome of the human preimplantation embryo," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    14. Takeshi Katsuda & Jonathan H. Sussman & Kenji Ito & Andrew Katznelson & Salina Yuan & Naomi Takenaka & Jinyang Li & Allyson J. Merrell & Hector Cure & Qinglan Li & Reyaz Ur Rasool & Irfan A. Asangani , 2024. "Cellular reprogramming in vivo initiated by SOX4 pioneer factor activity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Shengen Shawn Hu & Lin Liu & Qi Li & Wenjing Ma & Michael J. Guertin & Clifford A. Meyer & Ke Deng & Tingting Zhang & Chongzhi Zang, 2022. "Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Yuyan Cheng & Yuqin Yin & Alice Zhang & Alexander M. Bernstein & Riki Kawaguchi & Kun Gao & Kyra Potter & Hui-Ya Gilbert & Yan Ao & Jing Ou & Catherine J. Fricano-Kugler & Jeffrey L. Goldberg & Zhigan, 2022. "Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    17. Akihiko Fukagawa & Natsuko Hama & Yasushi Totoki & Hiromi Nakamura & Yasuhito Arai & Mihoko Saito-Adachi & Akiko Maeshima & Yoshiyuki Matsui & Shinichi Yachida & Tetsuo Ushiku & Tatsuhiro Shibata, 2023. "Genomic and epigenomic integrative subtypes of renal cell carcinoma in a Japanese cohort," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Zhuo Ma & Xiaofei Zhang & Wen Zhong & Hongyan Yi & Xiaowei Chen & Yinsuo Zhao & Yanlin Ma & Eli Song & Tao Xu, 2023. "Deciphering early human pancreas development at the single-cell level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44142-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.