IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44098-x.html
   My bibliography  Save this article

Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing

Author

Listed:
  • Jack Holcombe

    (University of Bristol)

  • Helen Weavers

    (University of Bristol)

Abstract

Precise coupling between cellular physiology and metabolism is emerging as a vital relationship underpinning tissue health and longevity. Nevertheless, functional-metabolic coupling within heterogenous microenvironments in vivo remains poorly understood due to tissue complexity and metabolic plasticity. Here, we establish the Drosophila renal system as a paradigm for linking mechanistic analysis of metabolism, at single-cell resolution, to organ-wide physiology. Kidneys are amongst the most energetically-demanding organs, yet exactly how individual cell types fine-tune metabolism to meet their diverse, unique physiologies over the life-course remains unclear. Integrating live-imaging of metabolite and organelle dynamics with spatio-temporal genetic perturbation within intact functional tissue, we uncover distinct cellular metabolic signatures essential to support renal physiology and healthy ageing. Cell type-specific programming of glucose handling, PPP-mediated glutathione regeneration and FA β-oxidation via dynamic lipid-peroxisomal networks, downstream of differential ERR receptor activity, precisely match cellular energetic demands whilst limiting damage and premature senescence; however, their dramatic dysregulation may underlie age-related renal dysfunction.

Suggested Citation

  • Jack Holcombe & Helen Weavers, 2023. "Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44098-x
    DOI: 10.1038/s41467-023-44098-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44098-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44098-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toby Lieber & Swathi P. Jeedigunta & Jonathan M. Palozzi & Ruth Lehmann & Thomas R. Hurd, 2019. "Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline," Nature, Nature, vol. 570(7761), pages 380-384, June.
    2. Prasanna Katti & Peter T. Ajayi & Angel Aponte & Christopher K. E. Bleck & Brian Glancy, 2022. "Identification of evolutionarily conserved regulators of muscle mitochondrial network organization," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan L. Gitschlag & Claudia V. Pereira & James P. Held & David M. McCandlish & Maulik R. Patel, 2024. "Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Annabel Qi En Ng & Seow Neng Chan & Jun Wei Pek, 2024. "Nutrient-dependent regulation of a stable intron modulates germline mitochondrial quality control," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Patricia Rojas-Ríos & Aymeric Chartier & Camille Enjolras & Julie Cremaschi & Céline Garret & Adel Boughlita & Anne Ramat & Martine Simonelig, 2024. "piRNAs are regulators of metabolic reprogramming in stem cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Sunjoo Joo & Thamali Kariyawasam & Minjae Kim & EonSeon Jin & Ursula Goodenough & Jae-Hyeok Lee, 2022. "Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44098-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.