IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44017-0.html
   My bibliography  Save this article

GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations

Author

Listed:
  • Tianci Song

    (University of Minnesota Twin Cities)

  • Charles Broadbent

    (University of Minnesota Twin Cities)

  • Rui Kuang

    (University of Minnesota Twin Cities)

Abstract

Spatially-resolved RNA profiling has now been widely used to understand cells’ structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data. Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed spatial transcriptomes provide a more complete gene expression landscape for downstream analyses of cell/spot clustering for tissue segmentation, and spatial gene expression clustering and visualizations.

Suggested Citation

  • Tianci Song & Charles Broadbent & Rui Kuang, 2023. "GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44017-0
    DOI: 10.1038/s41467-023-44017-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44017-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44017-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoyang Li & Juexiao Zhou & Zhongxiao Li & Siyuan Chen & Xingyu Liao & Bin Zhang & Ruochi Zhang & Yu Wang & Shiwei Sun & Xin Gao, 2023. "A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yahui Long & Kok Siong Ang & Mengwei Li & Kian Long Kelvin Chong & Raman Sethi & Chengwei Zhong & Hang Xu & Zhiwei Ong & Karishma Sachaphibulkij & Ao Chen & Li Zeng & Huazhu Fu & Min Wu & Lina Hsiu Ki, 2023. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Kangning Dong & Shihua Zhang, 2022. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaichen Xu & Yan Lu & Suyang Hou & Kainan Liu & Yihang Du & Mengqian Huang & Hao Feng & Hao Wu & Xiaobo Sun, 2024. "Detecting anomalous anatomic regions in spatial transcriptomics with STANDS," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Chunman Zuo & Junjie Xia & Luonan Chen, 2024. "Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Guanshen Cui & Kangning Dong & Jia-Yi Zhou & Shang Li & Ying Wu & Qinghua Han & Bofei Yao & Qunlun Shen & Yong-Liang Zhao & Ying Yang & Jun Cai & Shihua Zhang & Yun-Gui Yang, 2023. "Spatiotemporal transcriptomic atlas reveals the dynamic characteristics and key regulators of planarian regeneration," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Linhua Wang & Mirjana Maletic-Savatic & Zhandong Liu, 2022. "Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Brian S. White & Aurélien Reyniès & Aaron M. Newman & Joshua J. Waterfall & Andrew Lamb & Florent Petitprez & Yating Lin & Rongshan Yu & Martin E. Guerrero-Gimenez & Sergii Domanskyi & Gianni Monaco &, 2024. "Community assessment of methods to deconvolve cellular composition from bulk gene expression," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    14. Biao Zhang & Shuqin Zhang & Shihua Zhang, 2024. "Whole brain alignment of spatial transcriptomics between humans and mice with BrainAlign," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Quentin Blampey & Kevin Mulder & Margaux Gardet & Stergios Christodoulidis & Charles-Antoine Dutertre & Fabrice André & Florent Ginhoux & Paul-Henry Cournède, 2024. "Sopa: a technology-invariant pipeline for analyses of image-based spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    19. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Haoyang Li & Yingxin Lin & Wenjia He & Wenkai Han & Xiaopeng Xu & Chencheng Xu & Elva Gao & Hongyu Zhao & Xin Gao, 2024. "SANTO: a coarse-to-fine alignment and stitching method for spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44017-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.