IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43847-2.html
   My bibliography  Save this article

Anti-VEGFR2 F(ab′)2 drug conjugate promotes renal accumulation and glomerular repair in diabetic nephropathy

Author

Listed:
  • Di Liu

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Yanling Song

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Hui Chen

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Yuchan You

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Luwen Zhu

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Jucong Zhang

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Xinyi Xu

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Jiahao Hu

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Xiajie Huang

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Xiaochuan Wu

    (College of Pharmaceutical Sciences, Zhejiang University)

  • Xiaoling Xu

    (Zhejiang Shuren University)

  • Saiping Jiang

    (The First Affiliated Hospital, College of Medicine, Zhejiang University)

  • Yongzhong Du

    (College of Pharmaceutical Sciences, Zhejiang University
    Jinhua Institute of Zhejiang University)

Abstract

Poor renal distribution of antibody-based drugs is the key factor contributing to low treatment efficiency for renal diseases and side effects. Here, we prepare F(ab′)2 fragmented vascular endothelial growth factor receptor 2 antibody (anti-VEGFR2 (F(ab′)2) to block VEGFR2 overactivation in diabetic nephropathy (DN). We find that the anti-VEGFR2 F(ab′)2 has a higher accumulation in DN male mice kidneys than the intact VEGFR2 antibody, and simultaneously preserves the binding ability to VEGFR2. Furthermore, we develop an antibody fragment drug conjugate, anti-VEGFR2 F(ab′)2-SS31, comprising the anti-VEGFR2 F(ab′)2 fragment linked to the mitochondria-targeted antioxidant peptide SS31. We find that introduction of SS31 potentiates the efficacy of anti-VEGFR2 F(ab′)2. These findings provide proof of concept for the premise that antibody fragment drug conjugate improves renal distribution and merits drug validation in renal disease therapy.

Suggested Citation

  • Di Liu & Yanling Song & Hui Chen & Yuchan You & Luwen Zhu & Jucong Zhang & Xinyi Xu & Jiahao Hu & Xiajie Huang & Xiaochuan Wu & Xiaoling Xu & Saiping Jiang & Yongzhong Du, 2023. "Anti-VEGFR2 F(ab′)2 drug conjugate promotes renal accumulation and glomerular repair in diabetic nephropathy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43847-2
    DOI: 10.1038/s41467-023-43847-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43847-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43847-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil C. Henderson & Florian Rieder & Thomas A. Wynn, 2020. "Fibrosis: from mechanisms to medicines," Nature, Nature, vol. 587(7835), pages 555-566, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Bobowski-Gerard & Clémence Boulet & Francesco P. Zummo & Julie Dubois-Chevalier & Céline Gheeraert & Mohamed Bou Saleh & Jean-Marc Strub & Amaury Farce & Maheul Ploton & Loïc Guille & Jimmy Vand, 2022. "Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Jiahao Gao & Ya Wang & Xianfu Meng & Xiaoshuang Wang & Fang Han & Hao Xing & Guanglei Lv & Li Zhang & Shiman Wu & Xingwu Jiang & Zhenwei Yao & Xiangming Fang & Jiawen Zhang & Wenbo Bu, 2024. "A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Huimei Chen & Gabriel Chew & Nithya Devapragash & Jui Zhi Loh & Kevin Y. Huang & Jing Guo & Shiyang Liu & Elisabeth Li Sa Tan & Shuang Chen & Nicole Gui Zhen Tee & Masum M. Mia & Manvendra K. Singh & , 2022. "The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Satoya Yoshida & Tatsuya Yoshida & Kohei Inukai & Katsuhiro Kato & Yoshimitsu Yura & Tomoki Hattori & Atsushi Enomoto & Koji Ohashi & Takahiro Okumura & Noriyuki Ouchi & Haruya Kawase & Nina Wettschur, 2024. "Protein kinase N promotes cardiac fibrosis in heart failure by fibroblast-to-myofibroblast conversion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Yasufumi Katanasaka & Harumi Yabe & Noriyuki Murata & Minori Sobukawa & Yuga Sugiyama & Hikaru Sato & Hiroki Honda & Yoichi Sunagawa & Masafumi Funamoto & Satoshi Shimizu & Kana Shimizu & Toshihide Ha, 2024. "Fibroblast-specific PRMT5 deficiency suppresses cardiac fibrosis and left ventricular dysfunction in male mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Peng Wang & Zhitao Huang & Yili Peng & Hongwei Li & Tong Lin & Yingyu Zhao & Zheng Hu & Zhanmei Zhou & Weijie Zhou & Youhua Liu & Fan Fan Hou, 2022. "Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Camille Cohen & Rana Mhaidly & Hugo Croizer & Yann Kieffer & Renaud Leclere & Anne Vincent-Salomon & Catherine Robley & Dany Anglicheau & Marion Rabant & Aurélie Sannier & Marc-Olivier Timsit & Sean E, 2024. "WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. Toshiyuki Ko & Seitaro Nomura & Shintaro Yamada & Kanna Fujita & Takanori Fujita & Masahiro Satoh & Chio Oka & Manami Katoh & Masamichi Ito & Mikako Katagiri & Tatsuro Sassa & Bo Zhang & Satoshi Hatsu, 2022. "Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Yuma Horii & Shoichi Matsuda & Chikashi Toyota & Takumi Morinaga & Takeo Nakaya & Soken Tsuchiya & Masaki Ohmuraya & Takanori Hironaka & Ryo Yoshiki & Kotaro Kasai & Yuto Yamauchi & Noburo Takizawa & , 2023. "VGLL3 is a mechanosensitive protein that promotes cardiac fibrosis through liquid–liquid phase separation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Yi Wang & Yuanhang Xu & Weijie Zhai & Zhinan Zhang & Yuhong Liu & Shujie Cheng & Hongyu Zhang, 2022. "In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhuo-Ran Yang & Huinan Suo & Jing-Wen Fan & Niannian Lv & Kehan Du & Teng Ma & Huimin Qin & Yan Li & Liu Yang & Nuoya Zhou & Hao Jiang & Juan Tao & Jintao Zhu, 2024. "Endogenous stimuli-responsive separating microneedles to inhibit hypertrophic scar through remodeling the pathological microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43847-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.