IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43582-8.html
   My bibliography  Save this article

iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy

Author

Listed:
  • Vincent Louvel

    (University of Geneva)

  • Romuald Haase

    (University of Geneva)

  • Olivier Mercey

    (University of Geneva)

  • Marine H. Laporte

    (University of Geneva)

  • Thibaut Eloy

    (University of Strasbourg)

  • Étienne Baudrier

    (University of Strasbourg)

  • Denis Fortun

    (University of Strasbourg)

  • Dominique Soldati-Favre

    (University of Geneva)

  • Virginie Hamel

    (University of Geneva)

  • Paul Guichard

    (University of Geneva)

Abstract

Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.

Suggested Citation

  • Vincent Louvel & Romuald Haase & Olivier Mercey & Marine H. Laporte & Thibaut Eloy & Étienne Baudrier & Denis Fortun & Dominique Soldati-Favre & Virginie Hamel & Paul Guichard, 2023. "iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43582-8
    DOI: 10.1038/s41467-023-43582-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43582-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43582-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Gui & William J. O’Shaughnessy & Kai Cai & Evan Reetz & Michael L. Reese & Daniela Nicastro, 2023. "Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ons M’Saad & Joerg Bewersdorf, 2020. "Light microscopy of proteins in their ultrastructural context," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Alexander von Appen & Jan Kosinski & Lenore Sparks & Alessandro Ori & Amanda L. DiGuilio & Benjamin Vollmer & Marie-Therese Mackmull & Niccolo Banterle & Luca Parca & Panagiotis Kastritis & Katarzyna , 2015. "In situ structural analysis of the human nuclear pore complex," Nature, Nature, vol. 526(7571), pages 140-143, October.
    4. Fabian U. Zwettler & Sebastian Reinhard & Davide Gambarotto & Toby D. M. Bell & Virginie Hamel & Paul Guichard & Markus Sauer, 2020. "Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM)," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingli Kong & Jianfang Liu & Meng Zhang & Zhuoyang Lu & Han Xue & Amy Ren & Jiankang Liu & Jinping Li & Wai Li Ling & Gang Ren, 2023. "Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Mark F. Santos & Germana Rappa & Jana Karbanová & Patrizia Diana & Girolamo Cirrincione & Daniela Carbone & David Manna & Feryal Aalam & David Wang & Cheryl Vanier & Denis Corbeil & Aurelio Lorico, 2023. "HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Ravish Rashpa & Natacha Klages & Domitille Schvartz & Carla Pasquarello & Mathieu Brochet, 2023. "The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Nicolas Dos Santos Pacheco & Albert Tell i Puig & Amandine Guérin & Matthew Martinez & Bohumil Maco & Nicolò Tosetti & Estefanía Delgado-Betancourt & Matteo Lunghi & Boris Striepen & Yi-Wei Chang & Do, 2024. "Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Michael P Lake & Louis-S Bouchard, 2017. "Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    6. Ana Teresa López-Jiménez & Serge Mostowy, 2021. "Emerging technologies and infection models in cellular microbiology," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Alexander A. Morano & Rachel M. Rudlaff & Jeffrey D. Dvorin, 2023. "A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Matthew Martinez & Shrawan Kumar Mageswaran & Amandine Guérin & William David Chen & Cameron Parker Thompson & Sabine Chavin & Dominique Soldati-Favre & Boris Striepen & Yi-Wei Chang, 2023. "Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ting-Jui Ben Chang & Jimmy Ching-Cheng Hsu & T. Tony Yang, 2023. "Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. David Winogradoff & Han-Yi Chou & Christopher Maffeo & Aleksei Aksimentiev, 2022. "Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43582-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.