IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43086-5.html
   My bibliography  Save this article

Topotactically transformable antiphase boundaries with enhanced ionic conductivity

Author

Listed:
  • Kun Xu

    (Tsinghua University
    Stanford University)

  • Shih-Wei Hung

    (City University of Hong Kong
    City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen))

  • Wenlong Si

    (Tsinghua University
    Foshang)

  • Yongshun Wu

    (Tsinghua University)

  • Chuanrui Huo

    (University of Science and Technology Beijing)

  • Pu Yu

    (Tsinghua University)

  • Xiaoyan Zhong

    (City University of Hong Kong
    City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen)
    City University of Hong Kong
    City University of Hong Kong)

  • Jing Zhu

    (Tsinghua University
    Foshang)

Abstract

Engineering lattice defects have emerged as a promising approach to effectively modulate the functionality of devices. Particularly, antiphase boundaries (APBs) as planar defects have been considered major obstacles to optimizing the ionic conductivity of mixed ionic-electronic conductors (MIECs) in solid oxide fuel applications. Here our study identifies topotactically transformable APBs (tt-APBs) at the atomic level and demonstrates that they exhibit higher ionic conductivity at elevated temperatures as compared to perfect domains. In-situ observation at the atomic scale tracks dynamic oxygen migration across these tt-APBs, where the abundant interstitial sites between tetrahedrons facilitate the ionic migration. Furthermore, annealing in an oxidized atmosphere can lead to the formation of interstitial oxygen at these APBs. These pieces of evidence clearly clarify that the tt-APBs can contribute to oxygen conductivity as anion diffusion channels, while the topotactically non-transformable APBs cannot. The topotactic transformability opens the way of defect engineering strategies for improving ionic transportation in MIECs.

Suggested Citation

  • Kun Xu & Shih-Wei Hung & Wenlong Si & Yongshun Wu & Chuanrui Huo & Pu Yu & Xiaoyan Zhong & Jing Zhu, 2023. "Topotactically transformable antiphase boundaries with enhanced ionic conductivity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43086-5
    DOI: 10.1038/s41467-023-43086-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43086-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43086-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I.-Wei Chen & X.-H. Wang, 2000. "Sintering dense nanocrystalline ceramics without final-stage grain growth," Nature, Nature, vol. 404(6774), pages 168-171, March.
    2. S. Farokhipoor & C. Magén & S. Venkatesan & J. Íñiguez & C. J. M. Daumont & D. Rubi & E. Snoeck & M. Mostovoy & C. de Graaf & A. Müller & M. Döblinger & C. Scheu & B. Noheda, 2014. "Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide," Nature, Nature, vol. 515(7527), pages 379-383, November.
    3. Keith P. McKenna & Florian Hofer & Daniel Gilks & Vlado K. Lazarov & Chunlin Chen & Zhongchang Wang & Yuichi Ikuhara, 2014. "Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    2. Ang Tao & Yixiao Jiang & Shanshan Chen & Yuqiao Zhang & Yi Cao & Tingting Yao & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2024. "Ferroelectric polarization and magnetic structure at domain walls in a multiferroic film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Felix Risch & Yuri Tikhonov & Igor Lukyanchuk & Adrian M. Ionescu & Igor Stolichnov, 2022. "Giant switchable non thermally-activated conduction in 180° domain walls in tetragonal Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Khani, Yasin & Kamyar, Niloofar & Bahadoran, Farzad & Safari, Nasser & Amini, Mostafa M., 2020. "A520 MOF-derived alumina as unique support for hydrogen production from methanol steam reforming: The critical role of support on performance," Renewable Energy, Elsevier, vol. 156(C), pages 1055-1064.
    5. Kun Xu & Ting Lin & Yiheng Rao & Ziqiang Wang & Qinghui Yang & Huaiwu Zhang & Jing Zhu, 2022. "Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43086-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.