IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42997-7.html
   My bibliography  Save this article

Gut microbial structural variation associates with immune checkpoint inhibitor response

Author

Listed:
  • Rong Liu

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • You Zou

    (Central South University)

  • Wei-Quan Wang

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Jun-Hong Chen

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Lei Zhang

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Jia Feng

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Ji-Ye Yin

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Xiao-Yuan Mao

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Qing Li

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Zhi-Ying Luo

    (Central South University
    Central South University)

  • Wei Zhang

    (Central South University
    Hunan Key Laboratory of Pharmacogenetics
    Ministry of Education
    National Clinical Research Center for Geriatric Disorders)

  • Dao-Ming Wang

    (Department of Genetics
    Department of Pediatrics)

Abstract

The gut microbiota may have an effect on the therapeutic resistance and toxicity of immune checkpoint inhibitors (ICIs). However, the associations between the highly variable genomes of gut bacteria and the effectiveness of ICIs remain unclear, despite the fact that merely a few gene mutations between similar bacterial strains may cause significant phenotypic variations. Here, using datasets from the gut microbiome of 996 patients from seven clinical trials, we systematically identify microbial genomic structural variants (SVs) using SGV-Finder. The associations between SVs and response, progression-free survival, overall survival, and immune-related adverse events are systematically explored by metagenome-wide association analysis and replicated in different cohorts. Associated SVs are located in multiple species, including Akkermansia muciniphila, Dorea formicigenerans, and Bacteroides caccae. We find genes that encode enzymes that participate in glucose metabolism be harbored in these associated regions. This work uncovers a nascent layer of gut microbiome heterogeneity that is correlated with hosts’ prognosis following ICI treatment and represents an advance in our knowledge of the intricate relationships between microbiota and tumor immunotherapy.

Suggested Citation

  • Rong Liu & You Zou & Wei-Quan Wang & Jun-Hong Chen & Lei Zhang & Jia Feng & Ji-Ye Yin & Xiao-Yuan Mao & Qing Li & Zhi-Ying Luo & Wei Zhang & Dao-Ming Wang, 2023. "Gut microbial structural variation associates with immune checkpoint inhibitor response," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42997-7
    DOI: 10.1038/s41467-023-42997-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42997-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42997-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Zeevi & Tal Korem & Anastasia Godneva & Noam Bar & Alexander Kurilshikov & Maya Lotan-Pompan & Adina Weinberger & Jingyuan Fu & Cisca Wijmenga & Alexandra Zhernakova & Eran Segal, 2019. "Structural variation in the gut microbiome associates with host health," Nature, Nature, vol. 568(7750), pages 43-48, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gina Paola Rodriguez-Castaño & Federico E Rey & Alejandro Caro-Quintero & Alejandro Acosta-González, 2020. "Gut-derived Flavonifractor species variants are differentially enriched during in vitro incubation with quercetin," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    2. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Liang Chen & Na Zhao & Jiabao Cao & Xiaolin Liu & Jiayue Xu & Yue Ma & Ying Yu & Xuan Zhang & Wenhui Zhang & Xiangyu Guan & Xiaotong Yu & Zhipeng Liu & Yanqun Fan & Yang Wang & Fan Liang & Depeng Wang, 2022. "Short- and long-read metagenomics expand individualized structural variations in gut microbiomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jingqiu Liao & Liat Shenhav & Julia A. Urban & Myrna Serrano & Bin Zhu & Gregory A. Buck & Tal Korem, 2023. "Microdiversity of the vaginal microbiome is associated with preterm birth," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Alex E. Mohr & Karen L. Sweazea & Devin A. Bowes & Paniz Jasbi & Corrie M. Whisner & Dorothy D. Sears & Rosa Krajmalnik-Brown & Yan Jin & Haiwei Gu & Judith Klein-Seetharaman & Karen M. Arciero & Eric, 2024. "Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Alan Le Goallec & Braden T Tierney & Jacob M Luber & Evan M Cofer & Aleksandar D Kostic & Chirag J Patel, 2020. "A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42997-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.