IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42799-x.html
   My bibliography  Save this article

Improving the photovoltage of Cu2O photocathodes with dual buffer layers

Author

Listed:
  • Jinshui Cheng

    (Renewable Energy Conversion and Storage Center, Nankai University)

  • Linxiao Wu

    (Renewable Energy Conversion and Storage Center, Nankai University)

  • Jingshan Luo

    (Renewable Energy Conversion and Storage Center, Nankai University
    Nankai University)

Abstract

Cuprous oxide (Cu2O) is a promising oxide material for photoelectrochemical water splitting (PEC), and increasing its photovoltage is the key to creating efficient overall PEC water-splitting devices. Previous reports are mostly focused on optimizing the energy band alignment between Cu2O and the n-type buffer layer to improve the photovoltage of Cu2O photocathodes. However, the band alignment between the n-type buffer layer and the protective layer is often ignored. In this work, Cu2O photocathodes with a single buffer layer (Ga2O3) and dual buffer layers (Ga2O3/ZnGeOx) are fabricated, and their PEC performances are compared. Results show that after inserting the second buffer layer (ZnGeOx), the onset potential of the Cu2O photocathode increases by 0.16 V. Operando electrochemical impedance spectroscopy measurements and analysis of the energy-level diagrams of each layer show that an energy level gradient between Ga2O3 and TiO2 is created when ZnGeOx is introduced, which eliminates the potential barrier at the interface of Ga2O3/TiO2 and improves the photovoltage of the Cu2O photocathode. Our work provides an effective approach to improve the photovoltage of photoelectrodes for solar water splitting by introducing dual buffer layers.

Suggested Citation

  • Jinshui Cheng & Linxiao Wu & Jingshan Luo, 2023. "Improving the photovoltage of Cu2O photocathodes with dual buffer layers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42799-x
    DOI: 10.1038/s41467-023-42799-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42799-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42799-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linfeng Pan & Yuhang Liu & Liang Yao & Ren & Kevin Sivula & Michael Grätzel & Anders Hagfeldt, 2020. "Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Daming Zhao & Yiqing Wang & Chung-Li Dong & Yu-Cheng Huang & Jie Chen & Fei Xue & Shaohua Shen & Liejin Guo, 2021. "Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting," Nature Energy, Nature, vol. 6(4), pages 388-397, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nihat Ege Sahin & W. J. Pech-Rodríguez & P. C. Meléndez-González & Juan Lopez Hernández & E. Rocha-Rangel, 2023. "Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges," Energies, MDPI, vol. 16(13), pages 1-25, June.
    2. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Rui-Ting Gao & Jiangwei Zhang & Tomohiko Nakajima & Jinlu He & Xianhu Liu & Xueyuan Zhang & Lei Wang & Limin Wu, 2023. "Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    5. Li, Yangyang & Zhang, Tao & Deng, Xintao & Liu, Biao & Ma, Jugang & Yang, Fuyuan & Ouyang, Minggao, 2022. "Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system," Applied Energy, Elsevier, vol. 328(C).
    6. Abderrahime Sekkat & Maciej Oskar Liedke & Viet Huong Nguyen & Maik Butterling & Federico Baiutti & Juan de Dios Sirvent Veru & Matthieu Weber & Laetitia Rapenne & Daniel Bellet & Guy Chichignoud & An, 2022. "Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Bo Wu & Tuo Wang & Bin Liu & Huimin Li & Yunlong Wang & Shujie Wang & Lili Zhang & Shaokun Jiang & Chunlei Pei & Jinlong Gong, 2022. "Stable solar water splitting with wettable organic-layer-protected silicon photocathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Xu, Jintao & Chen, Fei & Deng, Chenggang, 2021. "Design and analysis of a novel multi-sectioned compound parabolic concentrator with multi-objective genetic algorithm," Energy, Elsevier, vol. 225(C).
    9. Lu, Buchu & Jiao, Fan & Chen, Chen & Yan, Xiangyu & Liu, Qibin, 2023. "Temperature-entropy and energy utilization diagrams for energy, exergy, and energy level analysis in solar water splitting reactions," Energy, Elsevier, vol. 284(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42799-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.