A simple method for developing lysine targeted covalent protein reagents
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-42632-5
Download full text from publisher
References listed on IDEAS
- Alice Douangamath & Daren Fearon & Paul Gehrtz & Tobias Krojer & Petra Lukacik & C. David Owen & Efrat Resnick & Claire Strain-Damerell & Anthony Aimon & Péter Ábrányi-Balogh & José Brandão-Neto & Ann, 2020. "Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Wen-Hao Guo & Xiaoli Qi & Xin Yu & Yang Liu & Chan-I Chung & Fang Bai & Xingcheng Lin & Dong Lu & Lingfei Wang & Jianwei Chen & Lynn Hsiao Su & Krystle J. Nomie & Feng Li & Meng C. Wang & Xiaokun Shu , 2020. "Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Lisa-Marie Funk & Gereon Poschmann & Fabian Rabe von Pappenheim & Ashwin Chari & Kim M. Stegmann & Antje Dickmanns & Marie Wensien & Nora Eulig & Elham Paknia & Gabi Heyne & Elke Penka & Arwen R. Pear, 2024. "Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- James Schiemer & Andrew Maxwell & Reto Horst & Shenping Liu & Daniel P. Uccello & Kris Borzilleri & Nisha Rajamohan & Matthew F. Brown & Matthew F. Calabrese, 2023. "A covalent BTK ternary complex compatible with targeted protein degradation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Christoph Grohmann & Charlene M. Magtoto & Joel R. Walker & Ngee Kiat Chua & Anna Gabrielyan & Mary Hall & Simon A. Cobbold & Stephen Mieruszynski & Martin Brzozowski & Daniel S. Simpson & Hao Dong & , 2022. "Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42632-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.