IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42537-3.html
   My bibliography  Save this article

Global climate forcing on late Miocene establishment of the Pampean aeolian system in South America

Author

Listed:
  • Blake Stubbins

    (University of South Carolina)

  • Andrew L. Leier

    (University of South Carolina)

  • David L. Barbeau

    (University of South Carolina)

  • Alex Pullen

    (Clemson University)

  • Jordan T. Abell

    (University of Arizona
    Lehigh University)

  • Junsheng Nie

    (Lanzhou University)

  • Marcelo A. Zárate

    (CONICET Universidad Nacional de La Pampa)

  • Mary Kate Fidler

    (Clemson University)

Abstract

Wind-blown dust from southern South America links the terrestrial, marine, atmospheric, and biological components of Earth’s climate system. The Pampas of central Argentina (~33°–39° S) contain a Miocene to Holocene aeolian record that spans an important interval of global cooling. Upper Miocene sediment provenance based on n = 3299 detrital-zircon U-Pb ages is consistent with the provenance of Pleistocene–Holocene deposits, indicating the Pampas are the site of a long-lived fluvial-aeolian system that has been operating since the late Miocene. Here, we show the establishment of aeolian sedimentation in the Pampas coincided with late Miocene cooling. These findings, combined with those from the Chinese Loess Plateau (~33°–39° N) underscore: (1) the role of fluvial transport in the development and maintenance of temporally persistent mid-latitude loess provinces; and (2) a global-climate forcing mechanism behind the establishment of large mid-latitude loess provinces during the late Miocene.

Suggested Citation

  • Blake Stubbins & Andrew L. Leier & David L. Barbeau & Alex Pullen & Jordan T. Abell & Junsheng Nie & Marcelo A. Zárate & Mary Kate Fidler, 2023. "Global climate forcing on late Miocene establishment of the Pampean aeolian system in South America," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42537-3
    DOI: 10.1038/s41467-023-42537-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42537-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42537-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex Pullen & David L. Barbeau & Andrew L. Leier & Jordan T. Abell & Madison Ward & Austin Bruner & Mary Kate Fidler, 2022. "A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Junsheng Nie & Thomas Stevens & Martin Rittner & Daniel Stockli & Eduardo Garzanti & Mara Limonta & Anna Bird & Sergio Andò & Pieter Vermeesch & Joel Saylor & Huayu Lu & Daniel Breecker & Xiaofei Hu &, 2015. "Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Jasper F. Kok & Daniel S. Ward & Natalie M. Mahowald & Amato T. Evan, 2018. "Global and regional importance of the direct dust-climate feedback," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Z. T. Guo & William F. Ruddiman & Q. Z. Hao & H. B. Wu & Y. S. Qiao & R. X. Zhu & S. Z. Peng & J. J. Wei & B. Y. Yuan & T. S. Liu, 2002. "Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China," Nature, Nature, vol. 416(6877), pages 159-163, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Pullen & David L. Barbeau & Andrew L. Leier & Jordan T. Abell & Madison Ward & Austin Bruner & Mary Kate Fidler, 2022. "A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Hongming He & Claudio O. Delang & Jie Zhou & Yu Li & Wenming He, 2021. "Simulation of social resilience affected by extreme events in ancient China," Climatic Change, Springer, vol. 166(3), pages 1-23, June.
    4. Prasad, Abhnil Amtesh & Nishant, Nidhi & Kay, Merlinde, 2022. "Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets," Applied Energy, Elsevier, vol. 310(C).
    5. Zhengquan Yao & Xuefa Shi & Zhengtang Guo & Xinzhou Li & B. Nagender Nath & Christian Betzler & Hui Zhang & Sebastian Lindhorst & Pavan Miriyala, 2023. "Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Liao, Kaihua & Lv, Ligang & Lai, Xiaoming & Zhu, Qing, 2021. "Toward a framework for the multimodel ensemble prediction of soil nitrogen losses," Ecological Modelling, Elsevier, vol. 456(C).
    8. Ali Darvishi Boloorani & Mohammad Saeed Najafi & Saham Mirzaie, 2021. "Role of land surface parameter change in dust emission and impacts of dust on climate in Southwest Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 111-132, October.
    9. Hong Ao & Diederik Liebrand & Mark J. Dekkers & Andrew P. Roberts & Tara N. Jonell & Zhangdong Jin & Yougui Song & Qingsong Liu & Qiang Sun & Xinxia Li & Chunju Huang & Xiaoke Qiang & Peng Zhang, 2024. "Orbital- and millennial-scale Asian winter monsoon variability across the Pliocene–Pleistocene glacial intensification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42537-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.