DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-42521-x
Download full text from publisher
References listed on IDEAS
- Yu-Jie Li & Yu-Lu Cao & Jian-Xiong Feng & Yuanbo Qi & Shuxia Meng & Jie-Feng Yang & Ya-Ting Zhong & Sisi Kang & Xiaoxue Chen & Lan Lan & Li Luo & Bing Yu & Shoudeng Chen & David C. Chan & Junjie Hu & , 2019. "Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
- Olga Martins de Brito & Luca Scorrano, 2008. "Mitofusin 2 tethers endoplasmic reticulum to mitochondria," Nature, Nature, vol. 456(7222), pages 605-610, December.
- Kenji Miki & Kohei Deguchi & Misato Nakanishi-Koakutsu & Antonio Lucena-Cacace & Shigeru Kondo & Yuya Fujiwara & Takeshi Hatani & Masako Sasaki & Yuki Naka & Chikako Okubo & Megumi Narita & Ikue Takei, 2021. "ERRγ enhances cardiac maturation with T-tubule formation in human iPSC-derived cardiomyocytes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Robert J. Pelham & Fred Chang, 2002. "Actin dynamics in the contractile ring during cytokinesis in fission yeast," Nature, Nature, vol. 419(6902), pages 82-86, September.
- Katherine H. Schreiber & Sebastian I. Arriola Apelo & Deyang Yu & Jacqueline A. Brinkman & Michael C. Velarde & Faizan A. Syed & Chen-Yu Liao & Emma L. Baar & Kathryn A. Carbajal & Dawn S. Sherman & D, 2019. "A novel rapamycin analog is highly selective for mTORC1 in vivo," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lorrie A. Kirshenbaum & Rimpy Dhingra & Roberto Bravo-Sagua & Sergio Lavandero, 2024. "DIAPH1-MFN2 interaction decreases the endoplasmic reticulum-mitochondrial distance and promotes cardiac injury following myocardial ischemia," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hongming Su & Hong Guo & Xiaoxue Qiu & Te-Yueh Lin & Chao Qin & Gail Celio & Peter Yong & Mark Senders & Xianlin Han & David A. Bernlohr & Xiaoli Chen, 2023. "Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Eunbyul Cho & Youngsik Woo & Yeongjun Suh & Bo Kyoung Suh & Soo Jeong Kim & Truong Thi My Nhung & Jin Yeong Yoo & Tran Diem Nghi & Su Been Lee & Dong Jin Mun & Sang Ki Park, 2023. "Ratiometric measurement of MAM Ca2+ dynamics using a modified CalfluxVTN," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Vaibhav Sidarala & Jie Zhu & Elena Levi-D’Ancona & Gemma L. Pearson & Emma C. Reck & Emily M. Walker & Brett A. Kaufman & Scott A. Soleimanpour, 2022. "Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Marine Berquez & Zhiyong Chen & Beatrice Paola Festa & Patrick Krohn & Svenja Aline Keller & Silvia Parolo & Mikhail Korzinkin & Anna Gaponova & Endre Laczko & Enrico Domenici & Olivier Devuyst & Ales, 2023. "Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
- Emmanouil Zacharioudakis & Bogos Agianian & Vasantha Kumar MV & Nikolaos Biris & Thomas P. Garner & Inna Rabinovich-Nikitin & Amanda T. Ouchida & Victoria Margulets & Lars Ulrik Nordstrøm & Joel S. Ri, 2022. "Modulating mitofusins to control mitochondrial function and signaling," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
- Zhenzhen Zi & Zhuzhen Zhang & Qiang Feng & Chiho Kim & Xu-Dong Wang & Philipp E. Scherer & Jinming Gao & Beth Levine & Yonghao Yu, 2022. "Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42521-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.