Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-Malic acid-mediated M2 macrophage polarization
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-42502-0
Download full text from publisher
References listed on IDEAS
- Shinya Sugimoto & Eiji Kobayashi & Masayuki Fujii & Yuki Ohta & Kazuya Arai & Mami Matano & Keiko Ishikawa & Kentaro Miyamoto & Kohta Toshimitsu & Sirirat Takahashi & Kosaku Nanki & Yoji Hakamata & Ta, 2021. "An organoid-based organ-repurposing approach to treat short bowel syndrome," Nature, Nature, vol. 592(7852), pages 99-104, April.
- Edmond M. Linossi & Kunlun Li & Gianluca Veggiani & Cyrus Tan & Farhad Dehkhoda & Colin Hockings & Dale J. Calleja & Narelle Keating & Rebecca Feltham & Andrew J. Brooks & Shawn S. Li & Sachdev S. Sid, 2021. "Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Ting Zou & Lixiong Gao & Yuxiao Zeng & Qiyou Li & Yijian Li & Siyu Chen & Xisu Hu & Xi Chen & Caiyun Fu & Haiwei Xu & Zheng Qin Yin, 2019. "Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarath Ramachandran & Nikolai Makukhin & Kevin Haubrich & Manjula Nagala & Beth Forrester & Dylan M. Lynch & Ryan Casement & Andrea Testa & Elvira Bruno & Rosaria Gitto & Alessio Ciulli, 2023. "Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Ohman Kwon & Hana Lee & Jaeeun Jung & Ye Seul Son & Sojeong Jeon & Won Dong Yoo & Naeun Son & Kwang Bo Jung & Eunho Choi & In-Chul Lee & Hyung-Jun Kwon & Chuna Kim & Mi-Ok Lee & Hyun-Soo Cho & Dae Soo, 2024. "Chemically-defined and scalable culture system for intestinal stem cells derived from human intestinal organoids," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Seonghyeon Park & Ohman Kwon & Hana Lee & Younghak Cho & Jemin Yeun & Sung Hyun Yoon & Sang Yu Sun & Yubin Huh & Won Dong Yu & Sohee Park & Naeun Son & Sojeong Jeon & Sugi Lee & Dae-Soo Kim & Sun Youn, 2024. "Xenogeneic-free culture of human intestinal stem cells on functional polymer-coated substrates for scalable, clinical-grade stem cell therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Maame Efua S. Sampah & Hannah Moore & Raheel Ahmad & Johannes Duess & Peng Lu & Carla Lopez & Steve Steinway & Daniel Scheese & Zachariah Raouf & Koichi Tsuboi & Jeffrey Ding & Connor Caputo & Madison, 2024. "Xenotransplanted human organoids identify transepithelial zinc transport as a key mediator of intestinal adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42502-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.