IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42427-8.html
   My bibliography  Save this article

Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex

Author

Listed:
  • Ping Lu

    (Zhejiang University
    Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Yusong Liu

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Fudan University)

  • Maozhou He

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Ting Cao

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Mengquan Yang

    (Zhejiang University
    Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Shutao Qi

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Hongtao Yu

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Haishan Gao

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

Abstract

O-GlcNAcylation is a conserved post-translational modification that attaches N-acetyl glucosamine (GlcNAc) to myriad cellular proteins. In response to nutritional and hormonal signals, O-GlcNAcylation regulates diverse cellular processes by modulating the stability, structure, and function of target proteins. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of cancer, diabetes, and neurodegeneration. A single pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyzes the addition and removal of O-GlcNAc on over 3,000 proteins in the human proteome. However, how OGT selects its native substrates and maintains the homeostatic control of O-GlcNAcylation of so many substrates against OGA is not fully understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of human OGT and the OGT-OGA complex. Our studies reveal that OGT forms a functionally important scissor-shaped dimer. Within the OGT-OGA complex structure, a long flexible OGA segment occupies the extended substrate-binding groove of OGT and positions a serine for O-GlcNAcylation, thus preventing OGT from modifying other substrates. Conversely, OGT disrupts the functional dimerization of OGA and occludes its active site, resulting in the blocking of access by other substrates. This mutual inhibition between OGT and OGA may limit the futile O-GlcNAcylation cycles and help to maintain O-GlcNAc homeostasis.

Suggested Citation

  • Ping Lu & Yusong Liu & Maozhou He & Ting Cao & Mengquan Yang & Shutao Qi & Hongtao Yu & Haishan Gao, 2023. "Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42427-8
    DOI: 10.1038/s41467-023-42427-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42427-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42427-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Lazarus & Yunsun Nam & Jiaoyang Jiang & Piotr Sliz & Suzanne Walker, 2011. "Structure of human O-GlcNAc transferase and its complex with a peptide substrate," Nature, Nature, vol. 469(7331), pages 564-567, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard W. Meek & James N. Blaza & Jil A. Busmann & Matthew G. Alteen & David J. Vocadlo & Gideon J. Davies, 2021. "Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Shivesh Kumar & Yan Wang & Ye Zhou & Lucas Dillard & Fay-Wei Li & Carly A. Sciandra & Ning Sui & Rodolfo Zentella & Emily Zahn & Jeffrey Shabanowitz & Donald F. Hunt & Mario J. Borgnia & Alberto Barte, 2023. "Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shiyang Cao & Tong Wang & Yifan Ren & Gengshan Wu & Yuan Zhang & Yafang Tan & Yazhou Zhou & Hongyan Chen & Yu Zhang & Yajun Song & Ruifu Yang & Zongmin Du, 2024. "A protein O-GlcNAc glycosyltransferase regulates the antioxidative response in Yersinia pestis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Duc T. Huynh & Kalina N. Tsolova & Abigail J. Watson & Sai Kwan Khal & Jordan R. Green & Di Li & Jimin Hu & Erik J. Soderblom & Jen-Tsan Chi & Chantell S. Evans & Michael Boyce, 2023. "O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42427-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.