IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26796-6.html
   My bibliography  Save this article

Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT

Author

Listed:
  • Richard W. Meek

    (University of York)

  • James N. Blaza

    (University of York)

  • Jil A. Busmann

    (Simon Fraser University, 8888 University Drive)

  • Matthew G. Alteen

    (Simon Fraser University, 8888 University Drive)

  • David J. Vocadlo

    (Simon Fraser University, 8888 University Drive
    Simon Fraser University, 8888 University Drive)

  • Gideon J. Davies

    (University of York)

Abstract

The O-linked β-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.

Suggested Citation

  • Richard W. Meek & James N. Blaza & Jil A. Busmann & Matthew G. Alteen & David J. Vocadlo & Gideon J. Davies, 2021. "Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26796-6
    DOI: 10.1038/s41467-021-26796-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26796-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26796-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiang Chen & Yibin Chen & Chunjing Bian & Ryoji Fujiki & Xiaochun Yu, 2013. "TET2 promotes histone O-GlcNAcylation during gene transcription," Nature, Nature, vol. 493(7433), pages 561-564, January.
    2. Michael B. Lazarus & Yunsun Nam & Jiaoyang Jiang & Piotr Sliz & Suzanne Walker, 2011. "Structure of human O-GlcNAc transferase and its complex with a peptide substrate," Nature, Nature, vol. 469(7331), pages 564-567, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Lu & Yusong Liu & Maozhou He & Ting Cao & Mengquan Yang & Shutao Qi & Hongtao Yu & Haishan Gao, 2023. "Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lijun Wang & Xiuling You & Dengfeng Ruan & Rui Shao & Hai-Qiang Dai & Weiliang Shen & Guo-Liang Xu & Wanlu Liu & Weiguo Zou, 2022. "TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Shivesh Kumar & Yan Wang & Ye Zhou & Lucas Dillard & Fay-Wei Li & Carly A. Sciandra & Ning Sui & Rodolfo Zentella & Emily Zahn & Jeffrey Shabanowitz & Donald F. Hunt & Mario J. Borgnia & Alberto Barte, 2023. "Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Duc T. Huynh & Kalina N. Tsolova & Abigail J. Watson & Sai Kwan Khal & Jordan R. Green & Di Li & Jimin Hu & Erik J. Soderblom & Jen-Tsan Chi & Chantell S. Evans & Michael Boyce, 2023. "O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26796-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.