IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42422-z.html
   My bibliography  Save this article

Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers

Author

Listed:
  • Vukan Levajac

    (Delft University of Technology)

  • Ji-Yin Wang

    (Delft University of Technology
    Beijing Academy of Quantum Information Sciences)

  • Cristina Sfiligoj

    (Delft University of Technology)

  • Mathilde Lemang

    (Delft University of Technology)

  • Jan Cornelis Wolff

    (Delft University of Technology)

  • Alberto Bordin

    (Delft University of Technology)

  • Ghada Badawy

    (Eindhoven University of Technology)

  • Sasa Gazibegovic

    (Eindhoven University of Technology)

  • Erik P. A. M. Bakkers

    (Eindhoven University of Technology)

  • Leo P. Kouwenhoven

    (Delft University of Technology)

Abstract

Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-superconductor nanostructures when searching for Majorana zero modes (MZMs). Typically, semiconductor sections controlled by local gates at the ends of hybrids serve as tunnel barriers. Besides detecting states only at the hybrid ends, such gate-defined tunnel probes can cause the formation of non-topological subgap states that mimic MZMs. Here, we develop an alternative type of tunnel probes to overcome these limitations. After the growth of an InSb-Al hybrid nanowire, a precisely controlled in-situ oxidation of the Al shell is performed to yield a nm-thick AlOx layer. In such thin isolating layer, tunnel probes can be arbitrarily defined at any position along the hybrid nanowire by shadow-wall angle-deposition of metallic leads. In this work, we make multiple tunnel probes along single nanowire hybrids and successfully identify Andreev bound states (ABSs) of various spatial extension residing along the hybrids.

Suggested Citation

  • Vukan Levajac & Ji-Yin Wang & Cristina Sfiligoj & Mathilde Lemang & Jan Cornelis Wolff & Alberto Bordin & Ghada Badawy & Sasa Gazibegovic & Erik P. A. M. Bakkers & Leo P. Kouwenhoven, 2023. "Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42422-z
    DOI: 10.1038/s41467-023-42422-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42422-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42422-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Heedt & Marina Quintero-Pérez & Francesco Borsoi & Alexandra Fursina & Nick Loo & Grzegorz P. Mazur & Michał P. Nowak & Mark Ammerlaan & Kongyi Li & Svetlana Korneychuk & Jie Shen & May An Y, 2021. "Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Nick Loo & Grzegorz P. Mazur & Tom Dvir & Guanzhong Wang & Robin C. Dekker & Ji-Yin Wang & Mathilde Lemang & Cristina Sfiligoj & Alberto Bordin & David Driel & Ghada Badawy & Sasa Gazibegovic & Erik P, 2023. "Electrostatic control of the proximity effect in the bulk of semiconductor-superconductor hybrids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Driel & Guanzhong Wang & Alberto Bordin & Nick Loo & Francesco Zatelli & Grzegorz P. Mazur & Di Xu & Sasa Gazibegovic & Ghada Badawy & Erik P. A. M. Bakkers & Leo P. Kouwenhoven & Tom Dvir, 2023. "Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. A. Ibabe & M. Gómez & G. O. Steffensen & T. Kanne & J. Nygård & A. Levy Yeyati & E. J. H. Lee, 2023. "Joule spectroscopy of hybrid superconductor–semiconductor nanodevices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Nick Loo & Grzegorz P. Mazur & Tom Dvir & Guanzhong Wang & Robin C. Dekker & Ji-Yin Wang & Mathilde Lemang & Cristina Sfiligoj & Alberto Bordin & David Driel & Ghada Badawy & Sasa Gazibegovic & Erik P, 2023. "Electrostatic control of the proximity effect in the bulk of semiconductor-superconductor hybrids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42422-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.