IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42325-z.html
   My bibliography  Save this article

Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols

Author

Listed:
  • Jingting Hu

    (Chinese Academy of Sciences
    Xiamen University)

  • Zeyu Wei

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunlong Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui Huang

    (Chinese Academy of Sciences)

  • Mingchao Zhang

    (Xiamen University)

  • Kang Cheng

    (Xiamen University)

  • Qinghong Zhang

    (Xiamen University)

  • Yutai Qi

    (Chinese Academy of Sciences
    Xiamen University)

  • Yanan Li

    (Chinese Academy of Sciences
    Xiamen University)

  • Jun Mao

    (Chinese Academy of Sciences
    Xiamen University)

  • Junfa Zhu

    (University of Science and Technology of China)

  • Lihui Wu

    (University of Science and Technology of China)

  • Wu Wen

    (University of Science and Technology of China)

  • Shengsheng Yu

    (University of Science and Technology of China)

  • Yang Pan

    (University of Science and Technology of China)

  • Jiuzhong Yang

    (University of Science and Technology of China)

  • Xiangjun Wei

    (Chinese Academy of Sciences)

  • Luozhen Jiang

    (Chinese Academy of Sciences)

  • Rui Si

    (Chinese Academy of Sciences)

  • Liang Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ye Wang

    (Xiamen University)

  • Dehui Deng

    (Chinese Academy of Sciences
    Xiamen University
    University of Chinese Academy of Sciences)

Abstract

Selective hydrogenation of carbon monoxide (CO) to higher alcohols (C2+OH) is a promising non-petroleum route for producing high-value chemicals, in which precise regulations of both C-O cleavage and C-C coupling are highly essential but remain great challenges. Herein, we report that highly selective CO hydrogenation to C2-4OH is achieved over a potassium-modified edge-rich molybdenum disulfide (MoS2) catalyst, which delivers a high CO conversion of 17% with a superior C2-4OH selectivity of 45.2% in hydrogenated products at 240 °C and 50 bar, outperforming previously reported non-noble metal-based catalysts under similar conditions. By regulating the relative abundance of edge to basal plane, C2-4OH to methanol selectivity ratio can be overturned from 0.4 to 2.2. Mechanistic studies reveal that sulfur vacancies at MoS2 edges boost carbon-chain growth by facilitating not only C-O cleavage but also C-C coupling, while potassium promotes the desorption of alcohols via electrostatic interaction with hydroxyls, thereby enabling preferential formation of C2-4OH.

Suggested Citation

  • Jingting Hu & Zeyu Wei & Yunlong Zhang & Rui Huang & Mingchao Zhang & Kang Cheng & Qinghong Zhang & Yutai Qi & Yanan Li & Jun Mao & Junfa Zhu & Lihui Wu & Wu Wen & Shengsheng Yu & Yang Pan & Jiuzhong , 2023. "Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42325-z
    DOI: 10.1038/s41467-023-42325-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42325-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42325-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuhao Wang & Shyam Kattel & Wengui Gao & Kongzhai Li & Ping Liu & Jingguang G. Chen & Hua Wang, 2019. "Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Jiao Deng & Haobo Li & Suheng Wang & Ding Ding & Mingshu Chen & Chuan Liu & Zhongqun Tian & K. S. Novoselov & Chao Ma & Dehui Deng & Xinhe Bao, 2017. "Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    2. Han, Jian & Yu, Jun & Xue, Zhaoteng & Wu, Guisheng & Mao, Dongsen, 2024. "Highly efficient CO2 hydrogenation to methanol over Cu–Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method," Renewable Energy, Elsevier, vol. 222(C).
    3. Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xueying Wan & Yifan Li & Yihong Chen & Jun Ma & Ying-Ao Liu & En-Dian Zhao & Yadi Gu & Yilin Zhao & Yi Cui & Rongtan Li & Dong Liu & Ran Long & Kim Meow Liew & Yujie Xiong, 2024. "A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Junxin Guo & Zhao Luo & GuoTao Hu & Zhao Wang, 2021. "Synthesis of oxygen vacancies enriched Cu/ZnO/CeO2 for CO2 hydrogenation to methanol," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1171-1179, December.
    6. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Shenghui Zhou & Wenrui Ma & Uzma Anjum & Mohammadreza Kosari & Shibo Xi & Sergey M. Kozlov & Hua Chun Zeng, 2023. "Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42325-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.