IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42127-3.html
   My bibliography  Save this article

Challenging an old paradigm by demonstrating transition metal-like chemistry at a neutral nonmetal center

Author

Listed:
  • David Biskup

    (Rheinische Friedrich-Wilhelms-Universität Bonn)

  • Gregor Schnakenburg

    (Rheinische Friedrich-Wilhelms-Universität Bonn)

  • René T. Boeré

    (University of Lethbridge)

  • Arturo Espinosa Ferao

    (Universidad de Murcia)

  • Rainer K. Streubel

    (Rheinische Friedrich-Wilhelms-Universität Bonn)

Abstract

We describe nonmetal adducts of the phosphorus center of terminal phosphinidene complexes using classical C- and N-ligands from metal coordination chemistry. The nature of the L-P bond has been analyzed by various theoretical methods including a refined method on the variation of the Laplacian of electron density ∇2ρ along the L-P bond path. Studies on thermal stability reveal stark differences between N-ligands such as N-methyl imidazole and C-ligands such as tert-butyl isocyanide, including ligand exchange reactions and a surprising formation of white phosphorus. A milestone is the transformation of a nonmetal-bound isocyanide into phosphaguanidine or an acyclic bisaminocarbene bound to phosphorus; the latter is analogous to the chemistry of transition metal-bound isocyanides, and the former reveals the differences. This example has been studied via cutting-edge DFT calculations leading to two pathways differently favored depending on variations in steric demand. This study reveals the emergence of organometallic from coordination chemistry of a neutral nonmetal center.

Suggested Citation

  • David Biskup & Gregor Schnakenburg & René T. Boeré & Arturo Espinosa Ferao & Rainer K. Streubel, 2023. "Challenging an old paradigm by demonstrating transition metal-like chemistry at a neutral nonmetal center," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42127-3
    DOI: 10.1038/s41467-023-42127-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42127-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42127-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Holger Braunschweig & Rian D. Dewhurst & Florian Hupp & Marco Nutz & Krzysztof Radacki & Christopher W. Tate & Alfredo Vargas & Qing Ye, 2015. "Multiple complexation of CO and related ligands to a main-group element," Nature, Nature, vol. 522(7556), pages 327-330, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyan Cai & Bing Xu & Juanjuan Cheng & Fei Cong & Sebastian Riedel & Xuefeng Wang, 2024. "N2 cleavage by silylene and formation of H2Si(μ-N)2SiH2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jun Fan & An-Ping Koh & Chi-Shiun Wu & Ming-Der Su & Cheuk-Wai So, 2024. "Carbon dioxide capture and functionalization by bis(N-heterocyclic carbene)-borylene complexes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Marcel Härterich & Alexander Matler & Rian D. Dewhurst & Andreas Sachs & Kai Oppel & Andreas Stoy & Holger Braunschweig, 2023. "A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42127-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.