IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42080-1.html
   My bibliography  Save this article

Upcycling fish scales through heating for steganography and Rhodamine B adsorption application

Author

Listed:
  • Malcolm Miao Geng Sow

    (NUS High School of Mathematics and Science)

  • Zheng Zhang

    (Agency for Science, Technology and Research (A*STAR))

  • Chorng Haur Sow

    (National University of Singapore)

  • Sharon Xiaodai Lim

    (National University of Singapore)

Abstract

With increasing population and limited resources, a potential route for improving sustainability is increased reuse of waste materials. By re-looking at wastes, interesting properties and multifunctionalities can be discovered in materials previously explored. Despite years of research on bio-compatible fish scales, there is limited study on the fluorescence property of this abundant waste material. Controlled denaturation of collagen and introduction of defects can serve as a means to transform the fluorescence property of these fish scale wastes while providing more adsorption sites for pollutant removal, turning multifunctional fish scales into a natural steganographic material for transmitting text and images at both the macroscopic and microscopic levels and effectively removing Rhodamine B pollutants (91 % removal) within a short contact time (10 minutes). Our work offers a glimpse into the realm of engineering defects-induced fluorescence in natural material with potential as bio-compatible fluorescence probes while encouraging multidimensional applicability to be established in otherwise overlooked waste resources.

Suggested Citation

  • Malcolm Miao Geng Sow & Zheng Zhang & Chorng Haur Sow & Sharon Xiaodai Lim, 2023. "Upcycling fish scales through heating for steganography and Rhodamine B adsorption application," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42080-1
    DOI: 10.1038/s41467-023-42080-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42080-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42080-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine Taylor Clelland & Viviana Risca & Carter Bancroft, 1999. "Hiding messages in DNA microdots," Nature, Nature, vol. 399(6736), pages 533-534, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Kuzdraliński & Marek Miśkiewicz & Hubert Szczerba & Wojciech Mazurczyk & Jeff Nivala & Bogdan Księżopolski, 2023. "Unlocking the potential of DNA-based tagging: current market solutions and expanding horizons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Cheuk Chi A. Ng & Wai Man Tam & Haidi Yin & Qian Wu & Pui-Kin So & Melody Yee-Man Wong & Francis C. M. Lau & Zhong-Ping Yao, 2021. "Data storage using peptide sequences," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42080-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.