IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41813-6.html
   My bibliography  Save this article

Macroscopic waves, biological clocks and morphogenesis driven by light in a giant unicellular green alga

Author

Listed:
  • Eldad Afik

    (California Institute of Technology
    Howard Hughes Medical Institute)

  • Toni J. B. Liu

    (California Institute of Technology)

  • Elliot M. Meyerowitz

    (California Institute of Technology
    Howard Hughes Medical Institute)

Abstract

A hallmark of self-organisation in living systems is their capacity to stabilise their own dynamics, often appearing to anticipate and act upon potential outcomes. Caulerpa brachypus is a marine green alga consisting of differentiated organs resembling leaves, stems and roots. While an individual can exceed a metre in size, it is a single multinucleated giant cell. Thus Caulerpa presents the mystery of morphogenesis on macroscopic scales in the absence of cellularization. The experiments reported here reveal self-organised waves of greenness — chloroplasts — that propagate throughout the alga in anticipation of the day-night light cycle. Using dynamical systems analysis we show that these waves are coupled to a self-sustained oscillator, and demonstrate their entrainment to light. Under constant conditions light intensity affects the natural period and drives transition to temporal disorder. Moreover, we find distinct morphologies depending on light temporal patterns, suggesting waves of chlorophyll could link biological oscillators to metabolism and morphogenesis in this giant single-celled organism.

Suggested Citation

  • Eldad Afik & Toni J. B. Liu & Elliot M. Meyerowitz, 2023. "Macroscopic waves, biological clocks and morphogenesis driven by light in a giant unicellular green alga," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41813-6
    DOI: 10.1038/s41467-023-41813-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41813-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41813-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leon Glass, 2001. "Synchronization and rhythmic processes in physiology," Nature, Nature, vol. 410(6825), pages 277-284, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Bioni Liberalquino & Maurizio Monge & Stefano Galatolo & Luigi Marangio, 2018. "Chaotic Itinerancy in Random Dynamical System Related to Associative Memory Models," Mathematics, MDPI, vol. 6(3), pages 1-10, March.
    2. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    3. Alexey V. Rusakov & Dmitry A. Tikhonov & Nailya I. Nurieva & Alexander B. Medvinsky, 2021. "Emergence of Self-Organized Dynamical Domains in a Ring of Coupled Population Oscillators," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    4. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Reis, A.S. & Brugnago, E.L. & Viana, R.L. & Batista, A.M. & Iarosz, K.C. & Ferrari, F.A.S. & Caldas, I.L., 2023. "The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    7. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar, 2016. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 197-203.
    8. Piassi, V.S.M. & Colli, E. & Tufaile, A. & Sartorelli, J.C., 2009. "Arnold family in acoustically forced air bubble formation," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1041-1049.
    9. Cazelles, Bernard & Chavez, Mario & Courbage, Maurice, 2012. "Editorial," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 1-1.
    10. Feng-Sheng Tsai & Yi-Li Shih & Chin-Tzong Pang & Sheng-Yi Hsu, 2019. "Formulation of Pruning Maps with Rhythmic Neural Firing," Mathematics, MDPI, vol. 7(12), pages 1-15, December.
    11. Thounaojam, Umeshkanta Singh & Manchanda, Kaustubh, 2023. "Continuous and explosive synchronization of phase oscillators on star network: Effect of degree-frequency correlations and time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Cornejo-Pérez, O. & Solı´s-Perales, G.C. & Arenas-Prado, J.A., 2012. "Synchronization dynamics in a small pacemaker neuronal ensemble via a robust adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 861-868.
    13. Koronovskii, Alexey A. & Moskalenko, Olga I. & Ponomarenko, Vladimir I. & Prokhorov, Mikhail D. & Hramov, Alexander E., 2016. "Binary generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 133-139.
    14. Thounaojam, Umeshkanta Singh, 2021. "Explosive synchronization in bipartite networks," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Mengsen Zhang & J A Scott Kelso & Emmanuelle Tognoli, 2018. "Critical diversity: Divided or united states of social coordination," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-19, April.
    16. Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Yang, Huijie & Zhang, Jie & Small, Michael, 2023. "Synchronization of multiple mobile reservoir computing oscillators in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Xiong, Wenjun & Xie, Wei & Cao, Jinde, 2006. "Adaptive exponential synchronization of delayed chaotic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 832-842.
    18. Jose I. Barredo & Carlo Lavalle & Valentina Sagris & Guy Engelen, 2005. "Representing future urban and regional scenarios for flood hazard mitigation," ERSA conference papers ersa05p147, European Regional Science Association.
    19. Gaetano Valenza & Luca Citi & Riccardo Barbieri, 2014. "Estimation of Instantaneous Complex Dynamics through Lyapunov Exponents: A Study on Heartbeat Dynamics," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.
    20. Nirvin, Prasath & Rihan, Fathalla A. & Rakkiyappan, Rajan & Pradeep, Chandrasekar, 2022. "Impulsive sampled-data controller design for synchronization of delayed T–S fuzzy Hindmarsh–Rose neuron model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 588-602.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41813-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.