IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41583-1.html
   My bibliography  Save this article

Critical requirement of SOS1 for tumor development and microenvironment modulation in KRASG12D-driven lung adenocarcinoma

Author

Listed:
  • Fernando C. Baltanás

    (CSIC-University of Salamanca and CIBERONC
    Institute of Biomedicine of Seville (IBiS)/“Virgen del Rocío” University Hospital/CSIC/University of Seville and Department of Medical Physiology and Biophysics, University of Seville)

  • Rósula García-Navas

    (CSIC-University of Salamanca and CIBERONC)

  • Pablo Rodríguez-Ramos

    (CSIC-University of Salamanca and CIBERONC)

  • Nuria Calzada

    (CSIC-University of Salamanca and CIBERONC)

  • Cristina Cuesta

    (CSIC-University of Salamanca)

  • Javier Borrajo

    (University of Salamanca)

  • Rocío Fuentes-Mateos

    (CSIC-University of Salamanca and CIBERONC)

  • Andrea Olarte-San Juan

    (CSIC-University of Salamanca and CIBERONC)

  • Nerea Vidaña

    (CSIC-University of Salamanca and CIBERONC)

  • Esther Castellano

    (CSIC-University of Salamanca)

  • Eugenio Santos

    (CSIC-University of Salamanca and CIBERONC)

Abstract

The impact of genetic ablation of SOS1 or SOS2 is evaluated in a murine model of KRASG12D-driven lung adenocarcinoma (LUAD). SOS2 ablation shows some protection during early stages but only SOS1 ablation causes significant, specific long term increase of survival/lifespan of the KRASG12D mice associated to markedly reduced tumor burden and reduced populations of cancer-associated fibroblasts, macrophages and T-lymphocytes in the lung tumor microenvironment (TME). SOS1 ablation also causes specific shrinkage and regression of LUAD tumoral masses and components of the TME in pre-established KRASG12D LUAD tumors. The critical requirement of SOS1 for KRASG12D-driven LUAD is further confirmed by means of intravenous tail injection of KRASG12D tumor cells into SOS1KO/KRASWT mice, or of SOS1-less, KRASG12D tumor cells into wildtype mice. In silico analyses of human lung cancer databases support also the dominant role of SOS1 regarding tumor development and survival in LUAD patients. Our data indicate that SOS1 is critically required for development of KRASG12D-driven LUAD and confirm the validity of this RAS-GEF activator as an actionable therapeutic target in KRAS mutant LUAD.

Suggested Citation

  • Fernando C. Baltanás & Rósula García-Navas & Pablo Rodríguez-Ramos & Nuria Calzada & Cristina Cuesta & Javier Borrajo & Rocío Fuentes-Mateos & Andrea Olarte-San Juan & Nerea Vidaña & Esther Castellano, 2023. "Critical requirement of SOS1 for tumor development and microenvironment modulation in KRASG12D-driven lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41583-1
    DOI: 10.1038/s41467-023-41583-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41583-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41583-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leisa Johnson & Kim Mercer & Doron Greenbaum & Roderick T. Bronson & Denise Crowley & David A. Tuveson & Tyler Jacks, 2001. "Somatic activation of the K-ras oncogene causes early onset lung cancer in mice," Nature, Nature, vol. 410(6832), pages 1111-1116, April.
    2. Kian-Huat Lim & Brooke B. Ancrile & David F. Kashatus & Christopher M. Counter, 2008. "Tumour maintenance is mediated by eNOS," Nature, Nature, vol. 452(7187), pages 646-649, April.
    3. Hao-Hsuan Jeng & Laura J Taylor & Dafna Bar-Sagi, 2012. "Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayang Ma & Kyle Laster & Zigang Dong, 2022. "The comparison of cancer gene mutation frequencies in Chinese and U.S. patient populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Andreas Weigert & Xiang Zheng & Alina Nenzel & Kati Turkowski & Stefan Günther & Elisabeth Strack & Evelyn Sirait-Fischer & Eiman Elwakeel & Ivan M. Kur & Vandana S. Nikam & Chanil Valasarajan & Hauke, 2022. "Fibrocytes boost tumor-supportive phenotypic switches in the lung cancer niche via the endothelin system," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Yao-Zhong Liu & Charles A Miller & Yan Zhuang & Sudurika S Mukhopadhyay & Shigeki Saito & Edward B. Overton & Gilbert F Morris, 2020. "The Impact of the Deepwater Horizon Oil Spill upon Lung Health—Mouse Model-Based RNA-Seq Analyses," IJERPH, MDPI, vol. 17(15), pages 1-23, July.
    4. Brandon M. Murphy & Elizabeth M. Terrell & Venkat R. Chirasani & Tirzah J. Weiss & Rachel E. Lew & Andrea M. Holderbaum & Aastha Dhakal & Valentina Posada & Marie Fort & Michael S. Bodnar & Leiah M. C, 2022. "Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Wenbin Xu & Han Yao & Zhen Wu & Xiaojun Yan & Zishan Jiao & Yajing Liu & Meng Zhang & Donglai Wang, 2024. "Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41583-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.