IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41539-5.html
   My bibliography  Save this article

Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents

Author

Listed:
  • Yachao He

    (Karolinska Institutet)

  • Ibrahim Kaya

    (Uppsala University)

  • Reza Shariatgorji

    (Uppsala University
    Uppsala University)

  • Johan Lundkvist

    (Karolinska Institutet
    Sinfonia Biotherapeutics AB)

  • Lars U. Wahlberg

    (Karolinska Institutet)

  • Anna Nilsson

    (Uppsala University
    Uppsala University)

  • Dejan Mamula

    (Karolinska Institutet)

  • Jan Kehr

    (Karolinska Institute)

  • Justyna Zareba-Paslawska

    (Karolinska Institutet)

  • Henrik Biverstål

    (Sinfonia Biotherapeutics AB
    Karolinska Institutet)

  • Karima Chergui

    (Karolinska Institutet)

  • Xiaoqun Zhang

    (Karolinska Institutet)

  • Per E. Andren

    (Uppsala University
    Uppsala University)

  • Per Svenningsson

    (Karolinska Institutet
    King’s College London)

Abstract

Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson’s disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlate with PD-related motor impairments. Dopaminergic PSAP-deficient (cPSAPDAT) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAPSERT) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAPDAT mice. The overexpression of α-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 α-synuclein levels in cPSAPDAT mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and α-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.

Suggested Citation

  • Yachao He & Ibrahim Kaya & Reza Shariatgorji & Johan Lundkvist & Lars U. Wahlberg & Anna Nilsson & Dejan Mamula & Jan Kehr & Justyna Zareba-Paslawska & Henrik Biverstål & Karima Chergui & Xiaoqun Zhan, 2023. "Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41539-5
    DOI: 10.1038/s41467-023-41539-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41539-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41539-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaolai Zhou & Lirong Sun & Oliver Bracko & Ji Whae Choi & Yan Jia & Alissa L. Nana & Owen Adam Brady & Jean C. Cruz Hernandez & Nozomi Nishimura & William W. Seeley & Fenghua Hu, 2017. "Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    2. Matt Baker & Ian R. Mackenzie & Stuart M. Pickering-Brown & Jennifer Gass & Rosa Rademakers & Caroline Lindholm & Julie Snowden & Jennifer Adamson & A. Dessa Sadovnick & Sara Rollinson & Ashley Cannon, 2006. "Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17," Nature, Nature, vol. 442(7105), pages 916-919, August.
    3. Marc Cruts & Ilse Gijselinck & Julie van der Zee & Sebastiaan Engelborghs & Hans Wils & Daniel Pirici & Rosa Rademakers & Rik Vandenberghe & Bart Dermaut & Jean-Jacques Martin & Cornelia van Duijn & K, 2006. "Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21," Nature, Nature, vol. 442(7105), pages 920-924, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hideyuki Takahashi & Sanaea Bhagwagar & Sarah H. Nies & Hongping Ye & Xianlin Han & Marius T. Chiasseu & Guilin Wang & Ian R. Mackenzie & Stephen M. Strittmatter, 2024. "Reduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Sebastian Boland & Sharan Swarup & Yohannes A. Ambaw & Pedro C. Malia & Ruth C. Richards & Alexander W. Fischer & Shubham Singh & Geetika Aggarwal & Salvatore Spina & Alissa L. Nana & Lea T. Grinberg , 2022. "Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Pasqualina Colella & Ruhi Sayana & Maria Valentina Suarez-Nieto & Jolanda Sarno & Kwamina Nyame & Jian Xiong & Luisa Natalia Pimentel Vera & Jessica Arozqueta Basurto & Marco Corbo & Anay Limaye & Kar, 2024. "CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    5. Rachel Tesla & Charlotte Guhl & Gordon C. Werthmann & Danielle Dixon & Basar Cenik & Yesu Addepalli & Jue Liang & Daniel M. Fass & Zachary Rosenthal & Stephen J. Haggarty & Noelle S. Williams & Bruce , 2024. "Benzoxazole-derivatives enhance progranulin expression and reverse the aberrant lysosomal proteome caused by GRN haploinsufficiency," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41539-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.