A pharmacophore-guided deep learning approach for bioactive molecular generation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-41454-9
Download full text from publisher
References listed on IDEAS
- Omar Mahmood & Elman Mansimov & Richard Bonneau & Kyunghyun Cho, 2021. "Masked graph modeling for molecule generation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Oscar Méndez-Lucio & Benoit Baillif & Djork-Arné Clevert & David Rouquié & Joerg Wichard, 2020. "De novo generation of hit-like molecules from gene expression signatures using artificial intelligence," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Zhao Ma & Jin Li & Kai Lin & Mythili Ramachandran & Dalin Zhang & Megan Showalter & Cristabelle Souza & Aaron Lindstrom & Lucas N. Solano & Bei Jia & Shiro Urayama & Yuyou Duan & Oliver Fiehn & Tzu-yi, 2020. "Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Flam-Shepherd & Kevin Zhu & Alán Aspuru-Guzik, 2022. "Language models can learn complex molecular distributions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Xiaoting Shan & Ying Cai & Binyu Zhu & Lingli Zhou & Xujie Sun & Xiaoxuan Xu & Qi Yin & Dangge Wang & Yaping Li, 2024. "Rational strategies for improving the efficiency of design and discovery of nanomedicines," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Yanyan Diao & Dandan Liu & Huan Ge & Rongrong Zhang & Kexin Jiang & Runhui Bao & Xiaoqian Zhu & Hongjie Bi & Wenjie Liao & Ziqi Chen & Kai Zhang & Rui Wang & Lili Zhu & Zhenjiang Zhao & Qiaoyu Hu & Ho, 2023. "Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Juan-Ni Wu & Tong Wang & Yue Chen & Li-Juan Tang & Hai-Long Wu & Ru-Qin Yu, 2024. "t-SMILES: a fragment-based molecular representation framework for de novo ligand design," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41454-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.