IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23415-2.html
   My bibliography  Save this article

Masked graph modeling for molecule generation

Author

Listed:
  • Omar Mahmood

    (Center for Data Science, New York University)

  • Elman Mansimov

    (Department of Computer Science, Courant Institute of Mathematical Sciences)

  • Richard Bonneau

    (Center for Genomics and Systems Biology, New York University)

  • Kyunghyun Cho

    (Department of Computer Science, Courant Institute of Mathematical Sciences)

Abstract

De novo, in-silico design of molecules is a challenging problem with applications in drug discovery and material design. We introduce a masked graph model, which learns a distribution over graphs by capturing conditional distributions over unobserved nodes (atoms) and edges (bonds) given observed ones. We train and then sample from our model by iteratively masking and replacing different parts of initialized graphs. We evaluate our approach on the QM9 and ChEMBL datasets using the GuacaMol distribution-learning benchmark. We find that validity, KL-divergence and Fréchet ChemNet Distance scores are anti-correlated with novelty, and that we can trade off between these metrics more effectively than existing models. On distributional metrics, our model outperforms previously proposed graph-based approaches and is competitive with SMILES-based approaches. Finally, we show our model generates molecules with desired values of specified properties while maintaining physiochemical similarity to the training distribution.

Suggested Citation

  • Omar Mahmood & Elman Mansimov & Richard Bonneau & Kyunghyun Cho, 2021. "Masked graph modeling for molecule generation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23415-2
    DOI: 10.1038/s41467-021-23415-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23415-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23415-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Flam-Shepherd & Kevin Zhu & Alán Aspuru-Guzik, 2022. "Language models can learn complex molecular distributions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Huimin Zhu & Renyi Zhou & Dongsheng Cao & Jing Tang & Min Li, 2023. "A pharmacophore-guided deep learning approach for bioactive molecular generation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Juan-Ni Wu & Tong Wang & Yue Chen & Li-Juan Tang & Hai-Long Wu & Ru-Qin Yu, 2024. "t-SMILES: a fragment-based molecular representation framework for de novo ligand design," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23415-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.