IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41115-x.html
   My bibliography  Save this article

Suppression of alpha-carbon racemization in peptide synthesis based on a thiol-labile amino protecting group

Author

Listed:
  • Yifei Zhou

    (Nankai University)

  • Hongjun Li

    (Nankai University)

  • Yi Huang

    (Nankai University)

  • Jiahui Li

    (Nankai University)

  • Guiyu Deng

    (Nankai University)

  • Gong Chen

    (Nankai University)

  • Zhen Xi

    (Nankai University)

  • Chuanzheng Zhou

    (Nankai University)

Abstract

In conventional solid-phase peptide synthesis (SPPS), α-amino groups are protected with alkoxycarbonyl groups (e.g., 9-fluorenylmethoxycarbonyl [Fmoc]). However, during SPPS, inherent side reactions of the protected amino acids (e.g., α-C racemization and aspartimide formation) generate by-products that are hard to remove. Herein, we report a thiol-labile amino protecting group for SPPS, the 2,4-dinitro-6-phenyl-benzene sulfenyl (DNPBS) group, which is attached to the α-amino group via a S–N bond and can be quantitatively removed in minutes under nearly neutral conditions (1 M p-toluenethiol/pyridine). The use of DNPBS greatly suppresses the main side reactions observed during conventional SPPS. Although DNPBS SPPS is not as efficient as Fmoc SPPS, especially for synthesis of long peptides, DNPBS and Fmoc are orthogonal protecting groups; and thus DNPBS SPPS and Fmoc SPPS can be combined to synthesize peptides that are otherwise difficult to obtain.

Suggested Citation

  • Yifei Zhou & Hongjun Li & Yi Huang & Jiahui Li & Guiyu Deng & Gong Chen & Zhen Xi & Chuanzheng Zhou, 2023. "Suppression of alpha-carbon racemization in peptide synthesis based on a thiol-labile amino protecting group," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41115-x
    DOI: 10.1038/s41467-023-41115-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41115-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41115-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Man Pan & Qingyun Zheng & Tian Wang & Lujun Liang & Junxiong Mao & Chong Zuo & Ruichao Ding & Huasong Ai & Yuan Xie & Dong Si & Yuanyuan Yu & Lei Liu & Minglei Zhao, 2021. "Structural insights into Ubr1-mediated N-degron polyubiquitination," Nature, Nature, vol. 600(7888), pages 334-338, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwei Wu & Yunxiang Du & Lu-Jun Liang & Ruichao Ding & Tianyi Zhang & Hongyi Cai & Xiaolin Tian & Man Pan & Lei Liu, 2024. "Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41115-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.