IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40705-z.html
   My bibliography  Save this article

Ligand recognition and G protein coupling of the human itch receptor MRGPRX1

Author

Listed:
  • Lulu Guo

    (Shandong University
    Shandong University School of Medicine)

  • Yumu Zhang

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    ShanghaiTech University)

  • Guoxing Fang

    (Shandong University)

  • Lu Tie

    (Peking University)

  • Yuming Zhuang

    (Shandong University)

  • Chenyang Xue

    (Southern University of Science and Technology)

  • Qi Liu

    (Shandong University)

  • Minghui Zhang

    (Shandong University School of Medicine)

  • Kongkai Zhu

    (Shandong University School of Medicine)

  • Chongzhao You

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Peiyu Xu

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Qingning Yuan

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Chao Zhang

    (Shandong University School of Medicine)

  • Lei Liu

    (Shandong University)

  • Naikang Rong

    (Shandong University School of Medicine)

  • Shengxuan Peng

    (Shandong University)

  • Yuan Liu

    (Shandong University)

  • Chuanzheng Wang

    (Shandong University)

  • Xin Luo

    (Shandong University)

  • Zongyao Lv

    (Shandong University)

  • Dongwei Kang

    (Shandong University)

  • Xiao Yu

    (Shandong University)

  • Cheng Zhang

    (Shandong University)

  • Yi Jiang

    (Lingang Laboratory)

  • Xinzhong Dong

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

  • Jiuyao Zhou

    (Guangzhou University of Chinese Medicine)

  • Zhongmin Liu

    (Southern University of Science and Technology)

  • Fan Yang

    (Shandong University
    Shandong University)

  • H. Eric Xu

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)

  • Jin-Peng Sun

    (Shandong University
    Shandong University School of Medicine
    Peking University)

Abstract

MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal “RF/RY” motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.

Suggested Citation

  • Lulu Guo & Yumu Zhang & Guoxing Fang & Lu Tie & Yuming Zhuang & Chenyang Xue & Qi Liu & Minghui Zhang & Kongkai Zhu & Chongzhao You & Peiyu Xu & Qingning Yuan & Chao Zhang & Lei Liu & Naikang Rong & S, 2023. "Ligand recognition and G protein coupling of the human itch receptor MRGPRX1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40705-z
    DOI: 10.1038/s41467-023-40705-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40705-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40705-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fan Yang & Lulu Guo & Yu Li & Guopeng Wang & Jia Wang & Chao Zhang & Guo-Xing Fang & Xu Chen & Lei Liu & Xu Yan & Qun Liu & Changxiu Qu & Yunfei Xu & Peng Xiao & Zhongliang Zhu & Zijian Li & Jiuyao Zh, 2021. "Structure, function and pharmacology of human itch receptor complexes," Nature, Nature, vol. 600(7887), pages 164-169, December.
    2. Can Cao & Hye Jin Kang & Isha Singh & He Chen & Chengwei Zhang & Wenlei Ye & Byron W. Hayes & Jing Liu & Ryan H. Gumpper & Brian J. Bender & Samuel T. Slocum & Brian E. Krumm & Katherine Lansu & John , 2021. "Structure, function and pharmacology of human itch GPCRs," Nature, Nature, vol. 600(7887), pages 170-175, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunxuan Lei & Xin Guo & Yanping Luo & Xiaoyin Niu & Yebin Xi & Lianbo Xiao & Dongyi He & Yanqin Bian & Yong Zhang & Li Wang & Xiaochun Peng & Zhaojun Wang & Guangjie Chen, 2024. "Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Li-Hua Zhao & Jingyu Lin & Su-Yu Ji & X. Edward Zhou & Chunyou Mao & Dan-Dan Shen & Xinheng He & Peng Xiao & Jinpeng Sun & Karsten Melcher & Yan Zhang & Xiao Yu & H. Eric Xu, 2022. "Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yang Yang & Hye Jin Kang & Ruogu Gao & Jingjing Wang & Gye Won Han & Jeffrey F. DiBerto & Lijie Wu & Jiahui Tong & Lu Qu & Yiran Wu & Ryan Pileski & Xuemei Li & Xuejun Cai Zhang & Suwen Zhao & Terry K, 2023. "Structural insights into the human niacin receptor HCA2-Gi signalling complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Edin Muratspahić & Kristine Deibler & Jianming Han & Nataša Tomašević & Kirtikumar B. Jadhav & Aina-Leonor Olivé-Marti & Nadine Hochrainer & Roland Hellinger & Johannes Koehbach & Jonathan F. Fay & Mo, 2023. "Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40705-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.