IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40406-7.html
   My bibliography  Save this article

XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis

Author

Listed:
  • Ying-Lan Chen

    (Academia Sinica
    National Cheng Kung University)

  • Fan-Wei Lin

    (Academia Sinica)

  • Kai-Tan Cheng

    (Academia Sinica)

  • Chi-Hsin Chang

    (Academia Sinica
    Taiwan International Graduate Program, Academia Sinica
    National Chung-Hsing University)

  • Sheng-Chi Hung

    (Academia Sinica
    National Taiwan University)

  • Thomas Efferth

    (Johannes Gutenberg University)

  • Yet-Ran Chen

    (Academia Sinica
    Taiwan International Graduate Program, Academia Sinica
    National Chung-Hsing University
    National Taiwan University)

Abstract

Proteolytic activation of cytokines regulates immunity in diverse organisms. In animals, cysteine-dependent aspartate-specific proteases (caspases) play central roles in cytokine maturation. Although the proteolytic production of peptide cytokines is also essential for plant immunity, evidence for cysteine-dependent aspartate-specific proteases in regulating plant immunity is still limited. In this study, we found that the C-terminal proteolytic processing of a caspase-like substrate motif “CNYD” within Pathogenesis-related protein 1 (PR1) generates an immunomodulatory cytokine (CAPE9) in Arabidopsis. Salicylic acid enhances CNYD-targeted protease activity and the proteolytic release of CAPE9 from PR1 in Arabidopsis. This process involves a protease exhibiting caspase-like enzyme activity, identified as Xylem cysteine peptidase 1 (XCP1). XCP1 exhibits a calcium-modulated pH-activity profile and a comparable activity to human caspases. XCP1 is required to induce systemic immunity triggered by pathogen-associated molecular patterns. This work reveals XCP1 as a key protease for plant immunity, which produces the cytokine CAPE9 from the canonical salicylic acid signaling marker PR1 to activate systemic immunity.

Suggested Citation

  • Ying-Lan Chen & Fan-Wei Lin & Kai-Tan Cheng & Chi-Hsin Chang & Sheng-Chi Hung & Thomas Efferth & Yet-Ran Chen, 2023. "XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40406-7
    DOI: 10.1038/s41467-023-40406-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40406-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40406-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bethany Huot & Christian Danve M. Castroverde & André C. Velásquez & Emily Hubbard & Jane A. Pulman & Jian Yao & Kevin L. Childs & Kenichi Tsuda & Beronda L. Montgomery & Sheng Yang He, 2017. "Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Han Lin & Meng-Yun Xu & Chuan-Chih Hsu & Florensia Ariani Damei & Hui-Chun Lee & Wei-Lun Tsai & Cuong V. Hoang & Yin-Ru Chiang & Lay-Sun Ma, 2023. "Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Peng Liu & Chaonan Shi & Shuang Liu & Jiajia Lei & Qisen Lu & Haichao Hu & Yan Ren & Ning Zhang & Congwei Sun & Lu Chen & Yaoyao Jiang & Lixiao Feng & Tianye Zhang & Kaili Zhong & Jiaqian Liu & Juan Z, 2023. "A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueting Gu & Fuyan Si & Zhengxiang Feng & Shunjie Li & Di Liang & Pei Yang & Chao Yang & Bin Yan & Jun Tang & Yu Yang & Tai Li & Lin Li & Jinling Zhou & Ji Li & Lili Feng & Ji-Yun Liu & Yuanzhu Yang &, 2023. "The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40406-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.