IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39940-1.html
   My bibliography  Save this article

Instabilities of heavy magnons in an anisotropic magnet

Author

Listed:
  • Xiaojian Bai

    (Oak Ridge National Laboratory
    Georgia Institute of Technology
    Louisiana State University)

  • Shang-Shun Zhang

    (University of Tennessee)

  • Hao Zhang

    (University of Tennessee
    Oak Ridge National Laboratory)

  • Zhiling Dun

    (Georgia Institute of Technology)

  • W. Adam Phelan

    (The Johns Hopkins University)

  • V. Ovidiu Garlea

    (Oak Ridge National Laboratory)

  • Martin Mourigal

    (Georgia Institute of Technology)

  • Cristian D. Batista

    (University of Tennessee
    Oak Ridge National Laboratory)

Abstract

The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2 is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.

Suggested Citation

  • Xiaojian Bai & Shang-Shun Zhang & Hao Zhang & Zhiling Dun & W. Adam Phelan & V. Ovidiu Garlea & Martin Mourigal & Cristian D. Batista, 2023. "Instabilities of heavy magnons in an anisotropic magnet," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39940-1
    DOI: 10.1038/s41467-023-39940-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39940-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39940-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Hong & Y. Qiu & M. Matsumoto & D. A. Tennant & K. Coester & K. P. Schmidt & F. F. Awwadi & M. M. Turnbull & H. Agrawal & A. L. Chernyshev, 2017. "Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Matthew B. Stone & Igor A. Zaliznyak & Tao Hong & Collin L. Broholm & Daniel H. Reich, 2006. "Quasiparticle breakdown in a quantum spin liquid," Nature, Nature, vol. 440(7081), pages 187-190, March.
    3. Stephen M. Winter & Kira Riedl & Pavel A. Maksimov & Alexander L. Chernyshev & Andreas Honecker & Roser Valentí, 2017. "Breakdown of magnons in a strongly spin-orbital coupled magnet," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    4. Joosung Oh & Manh Duc Le & Ho-Hyun Nahm & Hasung Sim & Jaehong Jeong & T. G. Perring & Hyungje Woo & Kenji Nakajima & Seiko Ohira-Kawamura & Zahra Yamani & Y. Yoshida & H. Eisaki & S. -W. Cheong & A. , 2016. "Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO3," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shunsuke Hasegawa & Hodaka Kikuchi & Shinichiro Asai & Zijun Wei & Barry Winn & Gabriele Sala & Shinichi Itoh & Takatsugu Masuda, 2024. "Field control of quasiparticle decay in a quantum antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Kirill Yu. Povarov & David E. Graf & Andreas Hauspurg & Sergei Zherlitsyn & Joachim Wosnitza & Takahiro Sakurai & Hitoshi Ohta & Shojiro Kimura & Hiroyuki Nojiri & V. Ovidiu Garlea & Andrey Zheludev &, 2024. "Pressure-tuned quantum criticality in the large-D antiferromagnet DTN," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Lebing Chen & Chengjie Mao & Jae-Ho Chung & Matthew B. Stone & Alexander I. Kolesnikov & Xiaoping Wang & Naoki Murai & Bin Gao & Olivier Delaire & Pengcheng Dai, 2022. "Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Fen Xue & Shy-Jay Lin & Mingyuan Song & William Hwang & Christoph Klewe & Chien-Min Lee & Emrah Turgut & Padraic Shafer & Arturas Vailionis & Yen-Lin Huang & Wilman Tsai & Xinyu Bao & Shan X. Wang, 2023. "Field-free spin-orbit torque switching assisted by in-plane unconventional spin torque in ultrathin [Pt/Co]N," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ha-Leem Kim & Takuma Saito & Heejun Yang & Hiroaki Ishizuka & Matthew John Coak & Jun Han Lee & Hasung Sim & Yoon Seok Oh & Naoto Nagaosa & Je-Geun Park, 2024. "Thermal Hall effects due to topological spin fluctuations in YMnO3," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    7. Han Li & Enze Lv & Ning Xi & Yuan Gao & Yang Qi & Wei Li & Gang Su, 2024. "Magnetocaloric effect of topological excitations in Kitaev magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Xu-Guang Zhou & Han Li & Yasuhiro H. Matsuda & Akira Matsuo & Wei Li & Nobuyuki Kurita & Gang Su & Koichi Kindo & Hidekazu Tanaka, 2023. "Possible intermediate quantum spin liquid phase in α-RuCl3 under high magnetic fields up to 100 T," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. A. Nag & A. Nocera & S. Agrestini & M. Garcia-Fernandez & A. C. Walters & Sang-Wook Cheong & S. Johnston & Ke-Jin Zhou, 2022. "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Song Bao & Zhao-Long Gu & Yanyan Shangguan & Zhentao Huang & Junbo Liao & Xiaoxue Zhao & Bo Zhang & Zhao-Yang Dong & Wei Wang & Ryoichi Kajimoto & Mitsutaka Nakamura & Tom Fennell & Shun-Li Yu & Jian-, 2023. "Direct observation of topological magnon polarons in a multiferroic material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39940-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.