IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39771-0.html
   My bibliography  Save this article

Interplay between human STING genotype and bacterial NADase activity regulates inter-individual disease variability

Author

Listed:
  • Elin Movert

    (Lund University)

  • Jaume Salgado Bolarin

    (Lund University)

  • Christine Valfridsson

    (Lund University)

  • Jorge Velarde

    (Division of Infectious Diseases, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School)

  • Steinar Skrede

    (Haukeland University Hospital
    University of Bergen)

  • Michael Nekludov

    (Karolinska University Hospital)

  • Ole Hyldegaard

    (Head and Orthopedic Center, Rigshospitalet
    University of Copenhagen)

  • Per Arnell

    (Sahlgrenska University Hospital)

  • Mattias Svensson

    (Karolinska University Hospital)

  • Anna Norrby-Teglund

    (Karolinska University Hospital)

  • Kyu Hong Cho

    (Indiana State University)

  • Eran Elhaik

    (Lund University)

  • Michael R. Wessels

    (Division of Infectious Diseases, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School)

  • Lars Råberg

    (Lund University)

  • Fredric Carlsson

    (Lund University)

Abstract

Variability in disease severity caused by a microbial pathogen is impacted by each infection representing a unique combination of host and pathogen genomes. Here, we show that the outcome of invasive Streptococcus pyogenes infection is regulated by an interplay between human STING genotype and bacterial NADase activity. S. pyogenes-derived c-di-AMP diffuses via streptolysin O pores into macrophages where it activates STING and the ensuing type I IFN response. However, the enzymatic activity of the NADase variants expressed by invasive strains suppresses STING-mediated type I IFN production. Analysis of patients with necrotizing S. pyogenes soft tissue infection indicates that a STING genotype associated with reduced c-di-AMP-binding capacity combined with high bacterial NADase activity promotes a ‘perfect storm’ manifested in poor outcome, whereas proficient and uninhibited STING-mediated type I IFN production correlates with protection against host-detrimental inflammation. These results reveal an immune-regulating function for bacterial NADase and provide insight regarding the host-pathogen genotype interplay underlying invasive infection and interindividual disease variability.

Suggested Citation

  • Elin Movert & Jaume Salgado Bolarin & Christine Valfridsson & Jorge Velarde & Steinar Skrede & Michael Nekludov & Ole Hyldegaard & Per Arnell & Mattias Svensson & Anna Norrby-Teglund & Kyu Hong Cho & , 2023. "Interplay between human STING genotype and bacterial NADase activity regulates inter-individual disease variability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39771-0
    DOI: 10.1038/s41467-023-39771-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39771-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39771-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin R. Morehouse & Apurva A. Govande & Adi Millman & Alexander F. A. Keszei & Brianna Lowey & Gal Ofir & Sichen Shao & Rotem Sorek & Philip J. Kranzusch, 2020. "STING cyclic dinucleotide sensing originated in bacteria," Nature, Nature, vol. 586(7829), pages 429-433, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Shin Yang & Tzu-Ping Ko & Chao-Jung Chen & Mei-Hui Hou & Yu-Chuan Wang & Yeh Chen, 2023. "Crystal structure and functional implications of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Mei-Hui Hou & Yu-Chuan Wang & Chia-Shin Yang & Kuei-Fen Liao & Je-Wei Chang & Orion Shih & Yi-Qi Yeh & Manoj Kumar Sriramoju & Tzu-Wen Weng & U-Ser Jeng & Shang-Te Danny Hsu & Yeh Chen, 2023. "Structural insights into the regulation, ligand recognition, and oligomerization of bacterial STING," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Shuangshuang Wang & Sirong Kuang & Haiguang Song & Erchao Sun & Mengling Li & Yuepeng Liu & Ziwei Xia & Xueqi Zhang & Xialin Wang & Jiumin Han & Venigalla B. Rao & Tingting Zou & Chen Tan & Pan Tao, 2024. "The role of TIR domain-containing proteins in bacterial defense against phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jiafeng Huang & Keli Zhu & Yina Gao & Feng Ye & Zhaolong Li & Yao Ge & Songqing Liu & Jing Yang & Ang Gao, 2024. "Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39771-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.