IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39769-8.html
   My bibliography  Save this article

The checkpoint inhibitor PD-1H/VISTA controls osteoclast-mediated multiple myeloma bone disease

Author

Listed:
  • Jing Fu

    (Columbia University Irving Medical Center, Department of Medicine)

  • Shirong Li

    (Columbia University Irving Medical Center, Department of Medicine)

  • Huihui Ma

    (Columbia University Irving Medical Center, Department of Medicine
    Columbia Center for Translational Immunology)

  • Jun Yang

    (Columbia University Irving Medical Center, Department of Medicine)

  • Gabriel M. Pagnotti

    (Indiana University
    University of Texas—MD Anderson Cancer Center)

  • Lewis M. Brown

    (Columbia University)

  • Stephen J. Weiss

    (University of Michigan)

  • Markus Y. Mapara

    (Columbia University Irving Medical Center, Department of Medicine
    Columbia Center for Translational Immunology)

  • Suzanne Lentzsch

    (Columbia University Irving Medical Center, Department of Medicine)

Abstract

Multiple myeloma bone disease is characterized by the development of osteolytic bone lesions. Recent work identified matrix metalloproteinase 13 as a myeloma-derived fusogen that induces osteoclast activation independent of its proteolytic activity. We now identify programmed death-1 homolog, PD-1H, as the bona fide MMP-13 receptor on osteoclasts. Silencing PD-1H or using Pd-1h-/- bone marrow cells abrogates the MMP-13-enhanced osteoclast fusion and bone-resorptive activity. Further, PD-1H interacts with the actin cytoskeleton and plays a necessary role in supporting c-Src activation and sealing zone formation. The critical role of PD-1H in myeloma lytic bone lesions was confirmed using a Pd-1h-/- myeloma bone disease mouse model wherein myeloma cells injected into Pd-1h-/-Rag2-/- results in attenuated bone destruction. Our findings identify a role of PD-1H in bone biology independent of its known immunoregulatory functions and suggest that targeting the MMP-13/PD-1H axis may represent a potential approach for the treatment of myeloma associated osteolysis.

Suggested Citation

  • Jing Fu & Shirong Li & Huihui Ma & Jun Yang & Gabriel M. Pagnotti & Lewis M. Brown & Stephen J. Weiss & Markus Y. Mapara & Suzanne Lentzsch, 2023. "The checkpoint inhibitor PD-1H/VISTA controls osteoclast-mediated multiple myeloma bone disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39769-8
    DOI: 10.1038/s41467-023-39769-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39769-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39769-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Johnston & Linhui Julie Su & Jason Pinckney & David Critton & Eric Boyer & Arathi Krishnakumar & Martin Corbett & Andrew L. Rankin & Rose Dibella & Lynne Campbell & Gaelle H. Martin & Hadia , 2019. "VISTA is an acidic pH-selective ligand for PSGL-1," Nature, Nature, vol. 574(7779), pages 565-570, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan M. Tirier & Jan-Philipp Mallm & Simon Steiger & Alexandra M. Poos & Mohamed H. S. Awwad & Nicola Giesen & Nicola Casiraghi & Hana Susak & Katharina Bauer & Anja Baumann & Lukas John & Anja Sec, 2021. "Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single‐cell transcriptomics," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39769-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.