IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39387-4.html
   My bibliography  Save this article

Chromatin remodeling by Pol II primes efficient Pol III transcription

Author

Listed:
  • Carlo Yague-Sanz

    (The University of Namur)

  • Valérie Migeot

    (The University of Namur)

  • Marc Larochelle

    (Université de Sherbrooke)

  • François Bachand

    (Université de Sherbrooke)

  • Maxime Wéry

    (Université Pierre et Marie Curie)

  • Antonin Morillon

    (Université Pierre et Marie Curie)

  • Damien Hermand

    (The University of Namur)

Abstract

The packaging of the genetic material into chromatin imposes the remodeling of this barrier to allow efficient transcription. RNA polymerase II activity is coupled with several histone modification complexes that enforce remodeling. How RNA polymerase III (Pol III) counteracts the inhibitory effect of chromatin is unknown. We report here a mechanism where RNA Polymerase II (Pol II) transcription is required to prime and maintain nucleosome depletion at Pol III loci and contributes to efficient Pol III recruitment upon re-initiation of growth from stationary phase in Fission yeast. The Pcr1 transcription factor participates in the recruitment of Pol II, which affects local histone occupancy through the associated SAGA complex and a Pol II phospho-S2 CTD / Mst2 pathway. These data expand the central role of Pol II in gene expression beyond mRNA synthesis.

Suggested Citation

  • Carlo Yague-Sanz & Valérie Migeot & Marc Larochelle & François Bachand & Maxime Wéry & Antonin Morillon & Damien Hermand, 2023. "Chromatin remodeling by Pol II primes efficient Pol III transcription," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39387-4
    DOI: 10.1038/s41467-023-39387-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39387-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39387-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kristin Brogaard & Liqun Xi & Ji-Ping Wang & Jonathan Widom, 2012. "A map of nucleosome positions in yeast at base-pair resolution," Nature, Nature, vol. 486(7404), pages 496-501, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrouz Eslami-Mossallam & Raoul D Schram & Marco Tompitak & John van Noort & Helmut Schiessel, 2016. "Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39387-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.