IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39284-w.html
   My bibliography  Save this article

Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis

Author

Listed:
  • Dandan Yang

    (Wuhan University)

  • Mao Zhang

    (Wuhan University)

  • Chang Su

    (Wuhan University)

  • Bin Dong

    (Wuhan University)

  • Yang Lu

    (Wuhan University)

Abstract

Candida albicans is a benign member of gut microbiota, but also causes life-threatening disseminated infections, suggesting that this fungus commensalism has evolved with retention of virulence traits. Here we reveal that N-acetylglucosamine (GlcNAc) enables C. albicans to balance between commensalism and pathogenesis. Although GlcNAc catabolism is beneficial for commensal growth of C. albicans, deleting GlcNAc sensor-transducer Ngs1 confers enhanced fitness, indicating that GlcNAc signaling is detrimental to commensalism. Interestingly, addition of GlcNAc attenuates commensal fitness of gut-evolved C. albicans but retains its disease-causing potential. We further demonstrate that GlcNAc is a major inducer of hypha-associated transcription in the gut, which represents the key determinant for commensal-pathogenic equilibrium. In addition to yeast-to-hypha morphogenesis, we also identify other factors, including Sod5 and Ofi1, that contribute to the balance. Thus, C. albicans uses GlcNAc to build up a tradeoff between fungal programs supporting commensalism and virulence, which may explain its success as a commensal and pathogen.

Suggested Citation

  • Dandan Yang & Mao Zhang & Chang Su & Bin Dong & Yang Lu, 2023. "Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39284-w
    DOI: 10.1038/s41467-023-39284-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39284-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39284-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang Su & Yang Lu & Haoping Liu, 2016. "N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    2. David L. Moyes & Duncan Wilson & Jonathan P. Richardson & Selene Mogavero & Shirley X. Tang & Julia Wernecke & Sarah Höfs & Remi L. Gratacap & Jon Robbins & Manohursingh Runglall & Celia Murciano & Ma, 2016. "Candidalysin is a fungal peptide toxin critical for mucosal infection," Nature, Nature, vol. 532(7597), pages 64-68, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Zhou & Norma V. Solis & Michaela Marshall & Qing Yao & Rachel Garleb & Mengli Yang & Eric Pearlman & Scott G. Filler & Haoping Liu, 2024. "Hyphal Als proteins act as CR3 ligands to promote immune responses against Candida albicans," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yu Liu & Ruina Wang & Jiacun Liu & Mengting Fan & Zi Ye & Yumeng Hao & Fei Xie & Ting Wang & Yuanying Jiang & Ningning Liu & Xiaoyan Cui & Quanzhen Lv & Lan Yan, 2024. "The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Melissa R. Cruz & Shane Cristy & Shantanu Guha & Giuseppe Buda Cesare & Elena Evdokimova & Hiram Sanchez & Dominika Borek & Pedro Miramón & Junko Yano & Paul L. Fidel & Alexei Savchenko & David R. And, 2022. "Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    5. Joy Lachat & Alice Pascault & Delphine Thibaut & Rémi Borgne & Jean-Marc Verbavatz & Allon Weiner, 2022. "Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39284-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.