Tuning orbital-selective phase transitions in a two-dimensional Hund’s correlated system
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-39188-9
Download full text from publisher
References listed on IDEAS
- Byungmin Sohn & Jeong Rae Kim & Choong H. Kim & Sangmin Lee & Sungsoo Hahn & Younsik Kim & Soonsang Huh & Donghan Kim & Youngdo Kim & Wonshik Kyung & Minsoo Kim & Miyoung Kim & Tae Won Noh & Changyoun, 2021. "Observation of metallic electronic structure in a single-atomic-layer oxide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- T. Valla & P. D. Johnson & Z. Yusof & B. Wells & Q. Li & S. M. Loureiro & R. J. Cava & M. Mikami & Y. Mori & M. Yoshimura & T. Sasaki, 2002. "Coherence–incoherence and dimensional crossover in layered strongly correlated metals," Nature, Nature, vol. 417(6889), pages 627-630, June.
- Xiaoyu Deng & Katharina M. Stadler & Kristjan Haule & Andreas Weichselbaum & Jan Delft & Gabriel Kotliar, 2019. "Signatures of Mottness and Hundness in archetypal correlated metals," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- D. Sutter & C. G. Fatuzzo & S. Moser & M. Kim & R. Fittipaldi & A. Vecchione & V. Granata & Y. Sassa & F. Cossalter & G. Gatti & M. Grioni & H. M. Rønnow & N. C. Plumb & C. E. Matt & M. Shi & M. Hoesc, 2017. "Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
- W. Beugeling & E. Kalesaki & C. Delerue & Y.-M. Niquet & D. Vanmaekelbergh & C. Morais Smith, 2015. "Topological states in multi-orbital HgTe honeycomb lattices," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Zhong & Cheng Peng & Haili Huang & Dandan Guan & Jinwoong Hwang & Kuan H. Hsu & Yi Hu & Chunjing Jia & Brian Moritz & Donghui Lu & Jun-Sik Lee & Jin-Feng Jia & Thomas P. Devereaux & Sung-Kwan Mo , 2023. "From Stoner to local moment magnetism in atomically thin Cr2Te3," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39188-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.