IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39132-x.html
   My bibliography  Save this article

Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform

Author

Listed:
  • Manel Zeghal

    (University of Ottawa)

  • Geneviève Laroche

    (University of Ottawa)

  • Julia Douglas Freitas

    (University of Ottawa)

  • Rebecca Wang

    (University of Ottawa)

  • Patrick M. Giguère

    (University of Ottawa
    University of Ottawa)

Abstract

Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio’s robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.

Suggested Citation

  • Manel Zeghal & Geneviève Laroche & Julia Douglas Freitas & Rebecca Wang & Patrick M. Giguère, 2023. "Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39132-x
    DOI: 10.1038/s41467-023-39132-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39132-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39132-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel M. Rosenbaum & Søren G. F. Rasmussen & Brian K. Kobilka, 2009. "The structure and function of G-protein-coupled receptors," Nature, Nature, vol. 459(7245), pages 356-363, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Miguel Fribourg & Diomedes E Logothetis & Javier González-Maeso & Stuart C Sealfon & Belén Galocha-Iragüen & Fernando Las-Heras Andrés & Vladimir Brezina, 2017. "Elucidation of molecular kinetic schemes from macroscopic traces using system identification," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-34, February.
    3. Oliver Tejero & Filip Pamula & Mitsumasa Koyanagi & Takashi Nagata & Pavel Afanasyev & Ishita Das & Xavier Deupi & Mordechai Sheves & Akihisa Terakita & Gebhard F. X. Schertler & Matthew J. Rodrigues , 2024. "Active state structures of a bistable visual opsin bound to G proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Mark J. Wall & Emily Hill & Robert Huckstepp & Kerry Barkan & Giuseppe Deganutti & Michele Leuenberger & Barbara Preti & Ian Winfield & Sabrina Carvalho & Anna Suchankova & Haifeng Wei & Dewi Safitri , 2022. "Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    5. Eyal Rozenfeld & Merav Tauber & Yair Ben-Chaim & Moshe Parnas, 2021. "GPCR voltage dependence controls neuronal plasticity and behavior," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Sathvik Anantakrishnan & Athi N. Naganathan, 2023. "Thermodynamic architecture and conformational plasticity of GPCRs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Anna Strunecka & Otakar Strunecky, 2019. "Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    9. Marie Mi Bonde & Jonas Tind Hansen & Samra Joke Sanni & Stig Haunsø & Steen Gammeltoft & Christina Lyngsø & Jakob Lerche Hansen, 2010. "Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    10. Arunkumar Krishnan & Markus Sällman Almén & Robert Fredriksson & Helgi B Schiöth, 2012. "The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-15, January.
    11. Pingfen Zhu & Weiqiang Liu & Xiaoxiao Zhang & Meng Li & Gaoming Liu & Yang Yu & Zihao Li & Xuanjing Li & Juan Du & Xiao Wang & Cyril C. Grueter & Ming Li & Xuming Zhou, 2023. "Correlated evolution of social organization and lifespan in mammals," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39132-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.