IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39056-6.html
   My bibliography  Save this article

TRIM5α recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR

Author

Listed:
  • Xiang-Hong Ran

    (Chongqing Medical University)

  • Jia-Wu Zhu

    (Kunming Medical University)

  • Run-Ze Ni

    (Chongqing Medical University)

  • Yong-Tang Zheng

    (Chinese Academy of Sciences)

  • Ya-Yun Chen

    (Chongqing Medical University)

  • Wei-Hua Zheng

    (Chongqing Medical University)

  • Dan Mu

    (Chongqing Medical University)

Abstract

Tripartite motif-containing protein 5α (TRIM5α) is generally known to block the postentry events of HIV-1. Here, we report an uncharacterized role for TRIM5α in the maintenance of viral latency. Knockdown of TRIM5α potentiates the transcription of HIV-1 in multiple latency models, which is reversed by shRNA-resistant TRIM5α. TRIM5α suppresses TNFα-activated HIV-1 LTR-driven as well as NF-κB- and Sp1-driven gene expression, with the RING and B-box 2 domains being the essential determinants. Mechanistically, TRIM5α binds to and enhances the recruitment of histone deacetylase 1 (HDAC1) to NF-κB p50 and Sp1. ChIP‒qPCR analyses further reveal that the association of TRIM5α with HIV-1 LTR induces HDAC1 recruitment and local H3K9 deacetylation. Conserved suppression effects of TRIM5α orthologs from multiple species on both HIV-1 and endo-retroelement HERV-K LTR activities have also been demonstrated. These findings provide new insights into the molecular mechanisms by which proviral latency is initially established and activatable proviruses are resilenced by histone deacetylase recruitment.

Suggested Citation

  • Xiang-Hong Ran & Jia-Wu Zhu & Run-Ze Ni & Yong-Tang Zheng & Ya-Yun Chen & Wei-Hua Zheng & Dan Mu, 2023. "TRIM5α recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39056-6
    DOI: 10.1038/s41467-023-39056-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39056-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39056-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Pertel & Stéphane Hausmann & Damien Morger & Sara Züger & Jessica Guerra & Josefina Lascano & Christian Reinhard & Federico A. Santoni & Pradeep D. Uchil & Laurence Chatel & Aurélie Bisiaux & M, 2011. "TRIM5 is an innate immune sensor for the retrovirus capsid lattice," Nature, Nature, vol. 472(7343), pages 361-365, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Herkules & Corey H. Yu & Alexander B. Taylor & Vi Dougherty & Susan T. Weintraub & Dmitri N. Ivanov, 2022. "Structural and functional asymmetry of RING trimerization controls priming and extension events in TRIM5α autoubiquitylation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Leo Kiss & Tyler Rhinesmith & Jakub Luptak & Claire F. Dickson & Jonas Weidenhausen & Shannon Smyly & Ji-Chun Yang & Sarah L. Maslen & Irmgard Sinning & David Neuhaus & Dean Clift & Leo C. James, 2023. "Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39056-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.