IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38919-2.html
   My bibliography  Save this article

macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma

Author

Listed:
  • Ana Nikolic

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Francesca Maule

    (University of Calgary
    University of Calgary)

  • Anna Bobyn

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Katrina Ellestad

    (University of Calgary
    University of Calgary)

  • Seungil Paik

    (University of Calgary
    University of Calgary)

  • Sajid A. Marhon

    (Princess Margaret Cancer Centre)

  • Parinaz Mehdipour

    (Princess Margaret Cancer Centre
    University of Oxford)

  • Xueqing Lun

    (University of Calgary
    University of Calgary)

  • Huey-Miin Chen

    (University of Calgary
    University of Calgary)

  • Claire Mallard

    (University of Calgary
    University of Calgary)

  • Alexander J. Hay

    (University of Calgary
    University of Calgary)

  • Michael J. Johnston

    (University of Calgary
    University of Calgary)

  • Christopher J. Gafuik

    (University of Calgary
    University of Calgary)

  • Franz J. Zemp

    (University of Calgary
    University of Calgary)

  • Yaoqing Shen

    (BC Cancer
    University of British Columbia)

  • Nicoletta Ninkovic

    (University of Calgary
    University of Calgary)

  • Katalin Osz

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Elodie Labit

    (University of Calgary
    University of Calgary)

  • N. Daniel Berger

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Duncan K. Brownsey

    (University of Calgary
    University of Calgary
    University of Calgary)

  • John J. Kelly

    (University of Calgary
    University of Calgary)

  • Jeff Biernaskie

    (University of Calgary
    University of Calgary)

  • Peter B. Dirks

    (Hospital for Sick Children
    University of Toronto)

  • Darren J. Derksen

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Steven J. M. Jones

    (BC Cancer
    University of British Columbia)

  • Donna L. Senger

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Jennifer A. Chan

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Douglas J. Mahoney

    (University of Calgary
    University of Calgary
    University of Calgary)

  • Daniel D. Carvalho

    (Princess Margaret Cancer Centre
    University of Toronto)

  • Marco Gallo

    (University of Calgary
    University of Calgary
    University of Calgary)

Abstract

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.

Suggested Citation

  • Ana Nikolic & Francesca Maule & Anna Bobyn & Katrina Ellestad & Seungil Paik & Sajid A. Marhon & Parinaz Mehdipour & Xueqing Lun & Huey-Miin Chen & Claire Mallard & Alexander J. Hay & Michael J. Johns, 2023. "macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38919-2
    DOI: 10.1038/s41467-023-38919-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38919-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38919-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Chen & Yanjiao Li & Tzong-Shiue Yu & Renée M. McKay & Dennis K. Burns & Steven G. Kernie & Luis F. Parada, 2012. "A restricted cell population propagates glioblastoma growth after chemotherapy," Nature, Nature, vol. 488(7412), pages 522-526, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Hao & Xiangzi Han & Haidong Huang & Xingjiang Yu & Jiankang Fang & Jianjun Zhao & Richard A. Prayson & Shideng Bao & Jennifer S. Yu, 2023. "Sema3C signaling is an alternative activator of the canonical WNT pathway in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ravinder K. Bahia & Xiaoguang Hao & Rozina Hassam & Orsolya Cseh & Danielle A. Bozek & H. Artee Luchman & Samuel Weiss, 2023. "Epigenetic and molecular coordination between HDAC2 and SMAD3-SKI regulates essential brain tumour stem cell characteristics," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Jun Liu & Xiaoying Wang & Ann T. Chen & Xingchun Gao & Benjamin T. Himes & Hongyi Zhang & Zeming Chen & Jianhui Wang & Wendy C. Sheu & Gang Deng & Yang Xiao & Pan Zou & Shenqi Zhang & Fuyao Liu & Yong, 2022. "ZNF117 regulates glioblastoma stem cell differentiation towards oligodendroglial lineage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Cathy Pichol-Thievend & Oceane Anezo & Aafrin M. Pettiwala & Guillaume Bourmeau & Remi Montagne & Anne-Marie Lyne & Pierre-Olivier Guichet & Pauline Deshors & Alberto Ballestín & Benjamin Blanchard & , 2024. "VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    5. Lihui Liu & Ziyang Liu & Qinghua Liu & Wei Wu & Peng Lin & Xing Liu & Yuechuan Zhang & Dongpeng Wang & Briana C. Prager & Ryan C. Gimple & Jichuan Yu & Weixi Zhao & Qiulian Wu & Wei Zhang & Erzhong Wu, 2023. "LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2’-O-methylation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Francesco Antonica & Lucia Santomaso & Davide Pernici & Linda Petrucci & Giuseppe Aiello & Alessandro Cutarelli & Luciano Conti & Alessandro Romanel & Evelina Miele & Toma Tebaldi & Luca Tiberi, 2022. "A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Faye M. Walker & Lays Martin Sobral & Etienne Danis & Bridget Sanford & Sahiti Donthula & Ilango Balakrishnan & Dong Wang & Angela Pierce & Sana D. Karam & Soudabeh Kargar & Natalie J. Serkova & Nicho, 2024. "Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Tatenda Mahlokozera & Bhuvic Patel & Hao Chen & Patrick Desouza & Xuan Qu & Diane D. Mao & Daniel Hafez & Wei Yang & Rukayat Taiwo & Mounica Paturu & Afshin Salehi & Amit D. Gujar & Gavin P. Dunn & Ni, 2021. "Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38919-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.