IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38866-y.html
   My bibliography  Save this article

Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing

Author

Listed:
  • Tristan P. Wallis

    (The University of Queensland)

  • Anmin Jiang

    (The University of Queensland)

  • Kyle Young

    (The University of Queensland)

  • Huiyi Hou

    (The University of Queensland)

  • Kye Kudo

    (The University of Queensland)

  • Alex J. McCann

    (The University of Queensland)

  • Nela Durisic

    (The University of Queensland)

  • Merja Joensuu

    (The University of Queensland
    The University of Queensland)

  • Dietmar Oelz

    (The University of Queensland)

  • Hien Nguyen

    (The University of Queensland)

  • Rachel S. Gormal

    (The University of Queensland)

  • Frédéric A. Meunier

    (The University of Queensland
    The University of Queensland)

Abstract

Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface.

Suggested Citation

  • Tristan P. Wallis & Anmin Jiang & Kyle Young & Huiyi Hou & Kye Kudo & Alex J. McCann & Nela Durisic & Merja Joensuu & Dietmar Oelz & Hien Nguyen & Rachel S. Gormal & Frédéric A. Meunier, 2023. "Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38866-y
    DOI: 10.1038/s41467-023-38866-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38866-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38866-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adekunle T. Bademosi & Elsa Lauwers & Pranesh Padmanabhan & Lorenzo Odierna & Ye Jin Chai & Andreas Papadopulos & Geoffrey J. Goodhill & Patrik Verstreken & Bruno van Swinderen & Frédéric A Meunier, 2017. "Erratum: In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters," Nature Communications, Nature, vol. 8(1), pages 1-1, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Siang Liau & Qiongyi Zhao & Adekunle Bademosi & Rachel S. Gormal & Hao Gong & Paul R. Marshall & Ambika Periyakaruppiah & Sachithrani U. Madugalle & Esmi L. Zajaczkowski & Laura J. Leighton & Haob, 2023. "Fear extinction is regulated by the activity of long noncoding RNAs at the synapse," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Anmin Jiang & Kye Kudo & Rachel S. Gormal & Sevannah Ellis & Sikao Guo & Tristan P. Wallis & Shanley F. Longfield & Phillip J. Robinson & Margaret E. Johnson & Merja Joensuu & Frédéric A. Meunier, 2024. "Dynamin1 long- and short-tail isoforms exploit distinct recruitment and spatial patterns to form endocytic nanoclusters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Shanley F. Longfield & Rachel S. Gormal & Matis Feller & Pierre Parutto & Jürgen Reingruber & Tristan P. Wallis & Merja Joensuu & George J. Augustine & Ramón Martínez-Mármol & David Holcman & Frédéric, 2024. "Synapsin 2a tetramerisation selectively controls the presynaptic nanoscale organisation of reserve synaptic vesicles," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Steen W. B. Bender & Marcus W. Dreisler & Min Zhang & Jacob Kæstel-Hansen & Nikos S. Hatzakis, 2024. "SEMORE: SEgmentation and MORphological fingErprinting by machine learning automates super-resolution data analysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Shanley F. Longfield & Mahdie Mollazade & Tristan P. Wallis & Rachel S. Gormal & Merja Joensuu & Jesse R. Wark & Ashley J. Waardenberg & Christopher Small & Mark E. Graham & Frédéric A. Meunier & Ramó, 2023. "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanley F. Longfield & Rachel S. Gormal & Matis Feller & Pierre Parutto & Jürgen Reingruber & Tristan P. Wallis & Merja Joensuu & George J. Augustine & Ramón Martínez-Mármol & David Holcman & Frédéric, 2024. "Synapsin 2a tetramerisation selectively controls the presynaptic nanoscale organisation of reserve synaptic vesicles," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Ling-Gang Wu & Chung Yu Chan, 2024. "Membrane transformations of fusion and budding," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Wei-Siang Liau & Qiongyi Zhao & Adekunle Bademosi & Rachel S. Gormal & Hao Gong & Paul R. Marshall & Ambika Periyakaruppiah & Sachithrani U. Madugalle & Esmi L. Zajaczkowski & Laura J. Leighton & Haob, 2023. "Fear extinction is regulated by the activity of long noncoding RNAs at the synapse," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shanley F. Longfield & Mahdie Mollazade & Tristan P. Wallis & Rachel S. Gormal & Merja Joensuu & Jesse R. Wark & Ashley J. Waardenberg & Christopher Small & Mark E. Graham & Frédéric A. Meunier & Ramó, 2023. "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38866-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.