IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38835-5.html
   My bibliography  Save this article

An approach to MOFaxanes by threading ultralong polymers through metal–organic framework microcrystals

Author

Listed:
  • Tomoya Iizuka

    (The University of Tokyo)

  • Hiroyuki Sano

    (The University of Tokyo)

  • Benjamin Ouay

    (The University of Tokyo
    Kyushu University)

  • Nobuhiko Hosono

    (The University of Tokyo)

  • Takashi Uemura

    (The University of Tokyo)

Abstract

Mechanically interlocked architecture has inspired the fabrication of numerous molecular systems, such as rotaxanes, catenanes, molecular knots, and their polymeric analogues. However, to date, the studies in this field have only focused on the molecular-scale integrity and topology of its unique penetrating structure. Thus, the topological material design of such architectures has not been fully explored from the nano- to the macroscopic scale. Here, we propose a supramolecular interlocked system, MOFaxane, comprised of long chain molecules penetrating a microcrystal of metal–organic framework (MOF). In this study, we describe the synthesis of polypseudoMOFaxane that is one of the MOFaxane family. This has a polythreaded structure in which multiple polymer chains thread a single MOF microcrystal, forming a topological network in the bulk state. The topological crosslinking architecture is obtained by simply mixing polymers and MOFs, and displays characteristics distinct from those of conventional polyrotaxane materials, including suppression of unthreading reactions.

Suggested Citation

  • Tomoya Iizuka & Hiroyuki Sano & Benjamin Ouay & Nobuhiko Hosono & Takashi Uemura, 2023. "An approach to MOFaxanes by threading ultralong polymers through metal–organic framework microcrystals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38835-5
    DOI: 10.1038/s41467-023-38835-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38835-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38835-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takashi Uemura & Nobuhiro Yanai & Satoshi Watanabe & Hideki Tanaka & Ryohei Numaguchi & Minoru T. Miyahara & Yusuke Ohta & Masataka Nagaoka & Susumu Kitagawa, 2010. "Unveiling thermal transitions of polymers in subnanometre pores," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    2. Benjamin Le Ouay & Chikara Watanabe & Shuto Mochizuki & Masayoshi Takayanagi & Masataka Nagaoka & Takashi Kitao & Takashi Uemura, 2018. "Selective sorting of polymers with different terminal groups using metal-organic frameworks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Shuang Peng & Binglin Bie & Yangzesheng Sun & Min Liu & Hengjiang Cong & Wentao Zhou & Yucong Xia & Heng Tang & Hexiang Deng & Xiang Zhou, 2018. "Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Chin-Fa Lee & David A. Leigh & Robin G. Pritchard & David Schultz & Simon J. Teat & Grigore A. Timco & Richard E. P. Winpenny, 2009. "Hybrid organic–inorganic rotaxanes and molecular shuttles," Nature, Nature, vol. 458(7236), pages 314-318, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yafang Zhang & Jiebin Tang & Jialin Chen & Yuhai Zhang & Xiangxiang Chen & Meng Ding & Weijia Zhou & Xijin Xu & Hong Liu & Guobin Xue, 2023. "Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Xiaoli Tian & Fu Li & Zhenyuan Tang & Song Wang & Kangkang Weng & Dan Liu & Shaoyong Lu & Wangyu Liu & Zhong Fu & Wenjun Li & Hengwei Qiu & Min Tu & Hao Zhang & Jinghong Li, 2024. "Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    6. Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
    7. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Zhang, Shudong & Wang, Zhenyang, 2018. "Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2319-2331.
    9. Zhang, Xialan & Lin, Qilang & Luo, Huijun & Luo, Shiyuan, 2020. "Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
    10. Feng, Daili & Feng, Yanhui & Qiu, Lin & Li, Pei & Zang, Yuyang & Zou, Hanying & Yu, Zepei & Zhang, Xinxin, 2019. "Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 578-605.
    11. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38835-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.